Gut microbiota-derived metabolites and their importance in neurological disorders

被引:34
|
作者
Swer, Nicole Mary [1 ]
Venkidesh, B. S. [2 ]
Murali, Thokur Sreepathy [3 ]
Mumbrekar, Kamalesh Dattaram [2 ]
机构
[1] Manipal Acad Higher Educ, Manipal Sch Life Sci, Manipal 576104, India
[2] Manipal Acad Higher Educ, Manipal Sch Life Sci, Dept Radiat Biol & Toxicol, Manipal 576104, India
[3] Manipal Acad Higher Educ, Manipal Sch Life Sci, Dept Biotechnol, Manipal 576104, India
关键词
Gut-brain axis; Gut-derived metabolites; Gut microbiome; Gut dysbiosis; Neurodegenerative disorders; Alzheimer's disorder; Short-chain fatty acids; CHAIN FATTY-ACIDS; SODIUM-BUTYRATE; MOUSE MODEL; PARKINSONS-DISEASE; BRAIN; LIPOPOLYSACCHARIDE; NEUROINFLAMMATION; SEROTONIN; PATHOLOGY; DEFICITS;
D O I
10.1007/s11033-022-08038-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbial-derived metabolites are the intermediate or end products of bacterial digestion. They are one of the most important molecules for the gut to connect with the brain. Depending on the levels of specific metabolites produced in the host, it can exert beneficial or detrimental effects on the brain and have been linked to several neurodegenerative and neuropsychiatric disorders. However, the underlying mechanisms remain largely unexplored. Insight into these mechanisms could reveal new pathways or targets, resulting in novel treatment approaches targeting neurodegenerative diseases. We have reviewed selected metabolites, including short-chain fatty acids, aromatic amino acids, trimethylamine-N-oxide, urolithin A, anthocyanins, equols, imidazole, and propionate to highlight their mechanism of action, underlying role in maintaining intestinal homeostasis and regulating neuro-immunoendocrine function. Further discussed on how altered metabolite levels can influence the gut-brain axis could lead to new prevention strategies or novel treatment approaches to neural disorders.
引用
收藏
页码:1663 / 1675
页数:13
相关论文
共 50 条
  • [21] Gut microbiota and microbiota-derived metabolites in colorectal cancer: enemy or friend
    Xinyi Wang
    Xicai Sun
    Jinjin Chu
    Wenchang Sun
    Shushan Yan
    Yaowen Wang
    World Journal of Microbiology and Biotechnology, 2023, 39
  • [22] Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis
    Su, Xiaomin
    Gao, Yunhuan
    Yang, Rongcun
    CELLS, 2022, 11 (15)
  • [23] Messengers From the Gut: Gut Microbiota-Derived Metabolites on Host Regulation
    Li, Chenyu
    Liang, Yaquan
    Qiao, Yuan
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [24] From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators
    Han, Hui
    Yi, Bao
    Zhong, Ruqing
    Wang, Mengyu
    Zhang, Shunfen
    Ma, Jie
    Yin, Yulong
    Yin, Jie
    Chen, Liang
    Zhang, Hongfu
    MICROBIOME, 2021, 9 (01)
  • [25] From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators
    Hui Han
    Bao Yi
    Ruqing Zhong
    Mengyu Wang
    Shunfen Zhang
    Jie Ma
    Yulong Yin
    Jie Yin
    Liang Chen
    Hongfu Zhang
    Microbiome, 9
  • [26] Gut Microbiota-Derived Metabolites in Colorectal Cancer: The Bad and the Challenges
    Zhang, Wanru
    An, Yaping
    Qin, Xiali
    Wu, Xuemei
    Wang, Xinyu
    Hou, Huiqin
    Song, Xueli
    Liu, Tianyu
    Wang, Bangmao
    Huang, Xuan
    Cao, Hailong
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [27] The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment
    Luu, Maik
    Schuetz, Burkhard
    Lauth, Matthias
    Visekruna, Alexander
    CANCERS, 2023, 15 (05)
  • [28] Microbiota-derived metabolites as drivers of gut-brain communication
    Ahmed, Hany
    Leyrolle, Quentin
    Koistinen, Ville
    Karkkainen, Olli
    Laye, Sophie
    Delzenne, Nathalie
    Hanhineva, Kati
    GUT MICROBES, 2022, 14 (01)
  • [29] Gut microbiota-derived metabolites tune host homeostasis fate
    Kim, Seungil
    Seo, Sang-Uk
    Kweon, Mi-Na
    SEMINARS IN IMMUNOPATHOLOGY, 2024, 46 (1-2)
  • [30] Gut microbiota-derived metabolites: Potential targets for cardiorenal syndrome
    Lai, Yuchen
    Zhu, Yujie
    Zhang, Xihui
    Ding, Shifang
    Wang, Fang
    Hao, Jincen
    Wang, Zhaomeng
    Shi, Congqi
    Xu, Yongjin
    Zheng, Lemin
    Huang, Wei
    PHARMACOLOGICAL RESEARCH, 2025, 214