Heterojunction engineering of Ni3S2/NiS nanowire for electrochemical hydrogen evolution

被引:19
|
作者
Chen, Meng [1 ]
Su, Qing [3 ]
Kitiphatpiboon, Nutthaphak [1 ]
Zhang, Juan [1 ]
Feng, Changrui [1 ]
Li, Shasha [4 ]
Zhao, Qiang [5 ]
Abudula, Abuliti [1 ]
Ma, Yufei [2 ,3 ]
Guan, Guoqing [1 ,2 ]
机构
[1] Hirosaki Univ, Sch Sci & Technol, 1 Bunkyocho, Hirosaki 0368560, Japan
[2] Hirosaki Univ, Inst Reg Innovat IRI, Energy Convers Engn Lab, 3 Bunkyocho, Hirosaki 0368561, Japan
[3] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
[4] Taiyuan Univ Sci & Technol, Coll Chem & Biol Engn, Taiyuan 030024, Peoples R China
[5] Shanxi Datong Univ, Sch Chem & Environm Engn, Datong 037009, Peoples R China
关键词
Water electrolysis; Hydrogen evolution reaction; Nickel sulfide based electrocatalysts; Epitaxial growth; Ni3S2/NiS heterojunction; DOPED CARBON; EFFICIENT ELECTROCATALYST; HETEROSTRUCTURES; INTERFACE; ALKALINE; FOAM;
D O I
10.1016/j.fuel.2022.125794
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hydrogen evolution reaction (HER) over the non-noble metal-based electrocatalysts is a promising approach to realize future clean energy economy. Herein, to achieve effective interface construction, epitaxial growth of NiS on the surface of one-dimensional (1D) Ni3S2 nanowire on nickel foam (NF) was performed, to construct a Ni3S(2)/NiS electrocatalyst with a heterojunction structure via a solid-state phase transformation. Benefiting from the strong charge transfer at the Ni3S2/NiS heterojunction interface, the d-band center was downshifted compared to the single component (Ni3S2 or NiS), which effectively optimized the valence state and the H adsorption of Ni, thus improved the HER activity. The obtained Ni3S2@NiS-250/NF showed the robust HER catalytic performance with a low overpotential of 129 mV to deliver the current density of 10 mA cm(-2) with a small Tafel slope (75.5 mV dec(-1)) in 1 M KOH media. Moreover, it exhibited superior durability for at least 50 h. This work provides a novel strategy for designing nickel sulfide-based catalysts for HER with high performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Three-dimensional Co-MoS2/Ni3S2/Ni assembly with interfacial engineering and electronic modulation for efficient hydrogen evolution reaction
    Tang, Xiangchu
    Zhang, Youming
    Zhang, Yicen
    Liu, Xinyi
    Cao, Jing
    Zhang, Cen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 67 : 42 - 49
  • [32] MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction
    Yu, Zihuan
    Yao, Huiqin
    Yang, Yan
    Yuan, Mengwei
    Li, Cheng
    He, Haiying
    Chan, Ting-Shan
    Yan, Dongpeng
    Ma, Shulan
    Zapol, Peter
    Kanatzidis, Mercouri G.
    CHEMISTRY OF MATERIALS, 2022, 34 (02) : 798 - 808
  • [33] Superb Hydrogen Evolution by a Pt Nanoparticle-Decorated Ni3S2 Microrod Array
    Xing, Zhicai
    Wang, Dewen
    Meng, Tian
    Yang, Xiurong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (35) : 39163 - 39169
  • [34] Nanoporous Ni3S2 Film on Ni Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Electrolyte
    Yu Jun Yang
    Xuan Hu
    Russian Journal of Electrochemistry, 2019, 55 : 88 - 96
  • [35] Nanoporous Ni3S2 Film on Ni Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Electrolyte
    Yang, Yu Jun
    Hu, Xuan
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2019, 55 (02) : 88 - 96
  • [36] Enhanced electrocatalysis for alkaline hydrogen evolution by Mn doping in a Ni3S2 nanosheet array
    Du, Huitong
    Kong, Rongmei
    Qu, Fengli
    Lu, Limin
    CHEMICAL COMMUNICATIONS, 2018, 54 (72) : 10100 - 10103
  • [37] W-Doped Ni3S2 Nanoparticles Modified with NiFeLa Hydroxide for Hydrogen Evolution
    Ye, Lin
    Du, Yunqiu
    Zhao, Yuguang
    Zhao, Lijun
    ACS APPLIED NANO MATERIALS, 2020, 3 (08): : 8372 - 8381
  • [38] The effect of urea on microstructures of Ni3S2 on nickel foam and its hydrogen evolution reaction
    Lv Jinlong
    Liang Tongxiang
    JOURNAL OF SOLID STATE CHEMISTRY, 2016, 243 : 106 - 110
  • [39] Engineering high-valence nickel sites in Ni3S2/Ni3Se2 architectures enabling urea-assisted hydrogen evolution reactions
    Ai, Taotao
    Bai, Miaomiao
    Bao, Weiwei
    Han, Jie
    Wei, Xueling
    Zou, Xiangyu
    Hou, Jungang
    Zhang, Lizhai
    Deng, Zhifeng
    Zhang, Yuxin
    GREEN CHEMISTRY, 2024, 26 (24) : 11934 - 11947
  • [40] Fe-Doped Ni3S2/Ni x P Heterojunction with Enhanced Electron Transfer for Efficient Electrochemical Water Splitting
    Xiao, Yu-Xuan
    He, Zhen-Zhao
    Bai, Licheng
    Chen, Qiang
    Ying, Jie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (51): : 24583 - 24590