A direct method of moving planes for the fractional p-Laplacian system with negative powers

被引:1
|
作者
Qie, Minghui [1 ]
Lu, Zhongxue [1 ]
Zhang, Xin [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
来源
关键词
The fractional p-Laplacian with negative powers; Decay at infinity; A boundary estimate; Method of moving planes; Radial symmetry; Monotonicity; LIOUVILLE TYPE THEOREM; MAXIMUM-PRINCIPLES; POSITIVE SOLUTIONS; RADIAL SYMMETRY; NONEXISTENCE; EQUATION; UNIQUENESS; REGULARITY; STATES;
D O I
10.1007/s13226-022-00257-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the direct method of moving planes for the fractional p-Laplacian system with negative powers. The key theorems are decay at infinity and a boundary estimate in the direct method of moving planes. Moreover, we apply the direct method of moving planes to obtain the radial symmetry and monotonicity of the positive solutions for the fractional p-Laplacian system with negative powers in the whole space. We also give one special case.
引用
收藏
页码:344 / 358
页数:15
相关论文
共 50 条
  • [21] On the logistic equation for the fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra
    Papageorgiou, Nikolaos S. S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1451 - 1468
  • [22] ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (1-2) : 15 - 28
  • [23] Higher differentiability for the fractional p-Laplacian
    Diening, Lars
    Kim, Kyeongbae
    Lee, Ho-Sik
    Nowak, Simon
    MATHEMATISCHE ANNALEN, 2024, : 5631 - 5693
  • [24] LYAPUNOV-TYPE INEQUALITIES FOR A FRACTIONAL p-LAPLACIAN SYSTEM
    Jleli, Mohamed
    Kirane, Mokhtar
    Samet, Bessem
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (06) : 1485 - 1506
  • [25] ON A SYSTEM OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN OPERATOR
    Luca, Rodica
    DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (03): : 691 - 713
  • [26] EIGENVALUES HOMOGENIZATION FOR THE FRACTIONAL p-LAPLACIAN
    Martin Salort, Ariel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [27] On Fractional p-Laplacian Equations at Resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1273 - 1288
  • [28] The sliding methods for the fractional p-Laplacian
    Wu, Leyun
    Chen, Wenxiong
    ADVANCES IN MATHEMATICS, 2020, 361
  • [29] Fractional p-Laplacian evolution equations
    Mazon, Jose M.
    Rossi, Julio D.
    Toledo, Julian
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (06): : 810 - 844
  • [30] On Fractional p-Laplacian Equations at Resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1273 - 1288