Efficient risk estimation via nested multilevel quasi-Monte Carlo simulation

被引:1
|
作者
Xu, Zhenghang [1 ]
He, Zhijian [2 ]
Wang, Xiaoqun [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Nested simulation; Quasi-Monte Carlo; Multilevel Monte Carlo; Risk estimation;
D O I
10.1016/j.cam.2023.115745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of estimating the probability of a large loss from a financial portfolio, where the future loss is expressed as a conditional expectation. Since the conditional expectation is intractable in most cases, one may resort to nested simulation. To reduce the complexity of nested simulation, we present an improved multilevel Monte Carlo (MLMC) method by using quasi-Monte Carlo (QMC) to estimate the portfolio loss in each financial scenario generated via Monte Carlo. We prove that using QMC can accelerate the convergence rates in both the crude nested simulation and the multilevel nested simulation. Under certain conditions, the complexity of the proposed MLMC method can be reduced to..(epsilon(-2)(log epsilon)(2)). On the other hand, we find that using QMC in MLMC encounters a high-kurtosis phenomenon due to the existence of indicator functions. To remedy this, we propose a smoothed method which uses logistic sigmoid functions to approximate indicator functions. Numerical results show that the optimal MLMC complexity O(epsilon(-2)) is almost attained even in moderate high dimensions.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] On Monte Carlo and Quasi-Monte Carlo for Matrix Computations
    Alexandrov, Vassil
    Davila, Diego
    Esquivel-Flores, Oscar
    Karaivanova, Aneta
    Gurov, Todor
    Atanassov, Emanouil
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 249 - 257
  • [32] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [33] Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
    Kleiss, Ronald
    Lazopoulos, Achilleas
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) : 93 - 115
  • [34] Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems
    Scheichl, R.
    Stuart, A. M.
    Teckentrup, A. L.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 493 - 518
  • [35] Quasi-Monte Carlo method in population genetics parameter estimation
    Chi, Hongmei
    Beerli, Peter
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 103 : 33 - 38
  • [36] A Quasi-Monte Carlo Method for the EGARCH Model Parameters Estimation
    Huang Tao
    PROCEEDINGS OF THE 8TH EURO-ASIA CONFERENCE ON ENVIRONMENT AND CSR: TOURISM, MICE, HOSPITALITY MANAGEMENT AND EDUCATION SESSION, PT II, 2012, : 102 - 106
  • [37] Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: efficient algorithms and numerical results
    Gilbert, Alexander D.
    Scheichl, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) : 504 - 535
  • [38] A practical approach to the error estimation of quasi-Monte Carlo integrations
    Morohosi, H
    Fushimi, H
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 377 - 390
  • [39] An Efficient Randomized Quasi-Monte Carlo Algorithm for the Pareto Distribution
    Huang, M. L.
    Pollanen, M.
    Yuen, W. K.
    MONTE CARLO METHODS AND APPLICATIONS, 2007, 13 (01): : 1 - 20
  • [40] Quasi-Monte Carlo estimation in generalized linear mixed models
    Pan, Jianxin
    Thompson, Robin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5765 - 5775