Efficient risk estimation via nested multilevel quasi-Monte Carlo simulation

被引:1
|
作者
Xu, Zhenghang [1 ]
He, Zhijian [2 ]
Wang, Xiaoqun [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Nested simulation; Quasi-Monte Carlo; Multilevel Monte Carlo; Risk estimation;
D O I
10.1016/j.cam.2023.115745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of estimating the probability of a large loss from a financial portfolio, where the future loss is expressed as a conditional expectation. Since the conditional expectation is intractable in most cases, one may resort to nested simulation. To reduce the complexity of nested simulation, we present an improved multilevel Monte Carlo (MLMC) method by using quasi-Monte Carlo (QMC) to estimate the portfolio loss in each financial scenario generated via Monte Carlo. We prove that using QMC can accelerate the convergence rates in both the crude nested simulation and the multilevel nested simulation. Under certain conditions, the complexity of the proposed MLMC method can be reduced to..(epsilon(-2)(log epsilon)(2)). On the other hand, we find that using QMC in MLMC encounters a high-kurtosis phenomenon due to the existence of indicator functions. To remedy this, we propose a smoothed method which uses logistic sigmoid functions to approximate indicator functions. Numerical results show that the optimal MLMC complexity O(epsilon(-2)) is almost attained even in moderate high dimensions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Monte Carlo and Quasi-Monte Carlo Density Estimation via Conditioning
    L'Ecuyer, Pierre
    Puchhammer, Florian
    Ben Abdellah, Amal
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1729 - 1748
  • [2] Density Estimation by Monte Carlo and Quasi-Monte Carlo
    L'Ecuyer, Pierre
    Puchhammer, Florian
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 3 - 21
  • [3] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [4] Multilevel higher-order quasi-Monte Carlo Bayesian estimation
    Dick, Josef
    Gantner, Robert N.
    Le Gia, Quoc T.
    Schwab, Christoph
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (05): : 953 - 995
  • [5] MULTILEVEL QUASI-MONTE CARLO FOR INTERVAL ANALYSIS
    Callens, Robin R. P.
    Faes, Matthias G. R.
    Moens, David
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (04) : 1 - 19
  • [6] QUANTILE ESTIMATION VIA A COMBINATION OF CONDITIONAL MONTE CARLO AND RANDOMIZED QUASI-MONTE CARLO
    Nakayama, Marvin K.
    Kaplan, Zachary T.
    Li, Yajuan
    Tuffin, Bruno
    L'Ecuyer, Pierre
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 301 - 312
  • [7] Quasi-Monte Carlo methods for simulation
    L'Ecuyer, P
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 81 - 89
  • [8] Quasi-Monte Carlo simulation of diffusion
    Lécot, C
    El Khettabi, F
    JOURNAL OF COMPLEXITY, 1999, 15 (03) : 342 - 359
  • [9] Multilevel quasi-Monte Carlo for optimization under uncertainty
    Philipp A. Guth
    Andreas Van Barel
    Numerische Mathematik, 2023, 154 : 443 - 484
  • [10] Multilevel Nested Simulation for Efficient Risk Estimation
    Giles, Michael B.
    Haji-Ali, Abdul-Lateef
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02): : 497 - 525