Detection of dawn sea fog/low stratus using geostationary satellite imagery

被引:8
|
作者
Yi, Li [1 ]
Li, Mengya [1 ]
Liu, Shuxiao [2 ]
Shi, Xiaomeng [2 ]
Li, King-Fai [3 ]
Bendix, Jorg [4 ]
机构
[1] Ocean Univ China, Coll Ocean & Atmospher Sci, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Phys Oceanog Lab, Qingdao, Peoples R China
[2] Qingdao Meteorol Bur, Qingdao, Peoples R China
[3] Univ Calif Riverside, Dept Environm Sci, Riverside, CA USA
[4] Philipps Univ Marburg, Fac Geog, Lab Climatol & Remote Sensing, Marburg, Germany
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Dawn sea fog and low stratus; Detection; FY-4A; CRF; FCN; FOG DETECTION; MARINE FOG; CLEAR-SKY; CLOUDS; OCEAN;
D O I
10.1016/j.rse.2023.113622
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traditional satellite-based detection of dawn sea fog/low stratus (SFLS) is difficult because of the weak reflec-tivity in the visible at low solar elevation angles and the contamination of the reflected sunlight in the mid-infrared. Here, based on single geostationary satellite measurements acquired by China's Fengyun 4A (FY-4A), we propose a dawn SFLS detection algorithm using the joint Fully Convolutional Network and Conditional Random Field (FCN-CRF), which are well known for image semantic segmentation under low contrast conditions. We train the FCN-CRF detection algorithm using FY-4A measurements over the Yellow Sea, where some dawn SFLS events are long-lived, providing relatively time-invariant dawn SFLS samples for training. We design a SFLS labelling technique using the satellite observations before and after dawn to train the FCN-CRF detection for dawn SFLS. A test against buoy visibility observations shows that the FCN-CRF detection is able to detect dawn SFLS with satisfactory accuracy, with a probability of detection (POD) of 84.9%, a false alarm ratio (FAR) of 8.7%, a critical success index (CSI) of 78.5% and a hit rate score (HR) of 87.4%.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] MoANet: A Motion Attention Network for Sea Fog Detection in Time Series Meteorological Satellite Imagery
    Yang, Ziheng
    Wu, Ming
    Xu, Mengqiu
    Zhu, Xun
    Zhang, Chuang
    Zhang, Bin
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 1976 - 1987
  • [22] MoANet: A Motion Attention Network for Sea Fog Detection in Time Series Meteorological Satellite Imagery
    Yang, Ziheng
    Wu, Ming
    Xu, Mengqiu
    Zhu, Xun
    Zhang, Chuang
    Zhang, Bin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1976 - 1987
  • [23] Fog and low cloud detection over northern parts of the Northern Territory using geostationary satellite data, June to September 2004
    Zeschke, Bodo
    AUSTRALIAN METEOROLOGICAL MAGAZINE, 2007, 56 (01): : 19 - 34
  • [24] Optical Thickness and Effective Radius Retrievals of Low Stratus and Fog from MTSAT Daytime Data as a Prerequisite for Yellow Sea Fog Detection
    Yi, Li
    Thies, Boris
    Zhang, Suping
    Shi, Xiaomeng
    Bendix, Joerg
    REMOTE SENSING, 2016, 8 (01)
  • [25] Detection of nighttime sea fog/stratus over the Huanghai Sea using MTSAT-1R IR data
    Gao Shanhong
    Wu Wei
    Zhu Leilei
    Fu Gang
    Huang Bin
    ACTA OCEANOLOGICA SINICA, 2009, 28 (02) : 23 - 35
  • [26] Automatic nighttime sea fog detection using GOES-16 imagery
    Amani, Meisam
    Mahdavi, Sahel
    Bullock, Terry
    Beale, Steven
    ATMOSPHERIC RESEARCH, 2020, 238
  • [27] CAPABILITY OF GEOSTATIONARY SATELLITE IMAGERY FOR SEA ICE MONITORING IN THE BOHAI AND YELLOW SEAS
    Lee, Hwa-Seon
    Lee, Kyu-Sung
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2016, 24 (06): : 1129 - 1135
  • [28] Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast
    Escrig, H.
    Batlles, F. J.
    Alonso, J.
    Baena, F. M.
    Bosch, J. L.
    Salbidegoitia, I. B.
    Burgaleta, J. I.
    ENERGY, 2013, 55 : 853 - 859
  • [29] Enhanced Typhoon Center Localization Using Geostationary Satellite Imagery
    Zhou, Yuxuan
    Min, Min
    Li, Jun
    Cao, Zhiqiang
    Gao, Ling
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (22)
  • [30] 1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data
    Schulz, H. M.
    Thies, B.
    Cermak, J.
    Bendix, J.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (10) : 2469 - 2480