Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries

被引:13
|
作者
Jin, Tao [1 ,2 ]
Ye, Xiling [1 ,2 ]
Chen, Zhuo [1 ,2 ]
Bai, Shuai [1 ,2 ]
Zhang, Yining [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Fujian, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
zinc-ion batteries; electrolyteadditive; lowtemperature; solubility equilibrium; dendritic growth; ELECTROLYTE; ANODE;
D O I
10.1021/acsami.3c16321
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Aqueous zinc-ion batteries have attracted attention due to their low cost and high safety. Unfortunately, dendrite growth, hydrogen evolution reactions, cathodic dissolution, and other problems are more serious; not only that, but also the cathodic and anodic materials' lattices contract when the temperature drops, and charge transfer and solid phase diffusion become slow, seriously aggravating dendrite growth. At present, there are few studies on the low-temperature system, and studies on retaining high specific capacity are even more rare. Herein, ethylene glycol (EG) and manganese sulfate (MSO) are selected as additives, and the manganese vanadate (MVO) cathode is used to find a high-performance solution at low temperature. MVO can provide higher specific capacity and better structural stability than MnO2 to adapt to a low-temperature environment. At the same time, Mn2+ in MSO can produce a cationic shield covering the initial zinc tip at an appropriate concentration to avoid the tip effect and inhibit the dissolution of MVO. EG can not only reduce the freezing point of the electrolyte but also promote the desolvation of [Zn-(H2O)(6)](2+). The synergistic effect of the three elements prevents the dissolution equilibrium of Mn2+ in MVO from fluctuating greatly due to the change of temperature. Therefore, when we use EG@0.2 M MnSO4 + 2 M ZnSO4 (EG + 0.2Mn/2ZSO) electrolyte at -30 degrees C, the Zn||Zn batteries which used this type of electrolyte can remain 350 h at 1 mA cm(-2) without failure. The Zn||Cu batteries can retain 100% Coulombic efficiency after more than 2000 cycles at 0.2 mA cm(-2). The Zn||MVO battery can reach 231.13 mA h g(-1) at its first cycle, and the capacity retention rate is still above 85% after 1000 cycles, which is higher than that of the existing low-temperature research system.
引用
收藏
页码:4729 / 4740
页数:12
相关论文
共 50 条
  • [21] Tailoring vanadium oxide crystal orientation for high-performance aqueous zinc-ion batteries
    Li, Rong
    Yuan, Yifei
    Yang, Linyu
    Wang, Jun
    Wang, Shuying
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    DALTON TRANSACTIONS, 2024, 53 (09) : 4108 - 4118
  • [22] Facing the capacity fading of vanadium-based zinc-ion batteries
    Xing, Zhenyue
    Xu, Guofu
    Han, Junwei
    Chen, Gen
    Lu, Bingan
    Liang, Shuquan
    Zhou, Jiang
    TRENDS IN CHEMISTRY, 2023, 5 (05): : 380 - 392
  • [23] Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries
    Jiayu Bai
    Songjie Hu
    Lirong Feng
    Xinhui Jin
    Dong Wang
    Kai Zhang
    Xiaohui Guo
    Chinese Chemical Letters, 2024, 35 (09) : 517 - 521
  • [24] Advances on Defect Engineering of Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries
    Guo, Cong
    Yi, Shanjun
    Si, Rui
    Xi, Baojuan
    An, Xuguang
    Liu, Jie
    Li, Jingfa
    Xiong, Shenglin
    ADVANCED ENERGY MATERIALS, 2022, 12 (40)
  • [25] Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges
    Chen, Xiudong
    Zhang, Hang
    Liu, Jin-Hang
    Gao, Yun
    Cao, Xiaohua
    Zhan, Changchao
    Wang, Yawei
    Wang, Shitao
    Chou, Shu-Lei
    Dou, Shi-Xue
    Cao, Dapeng
    ENERGY STORAGE MATERIALS, 2022, 50 : 21 - 46
  • [26] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [27] Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries
    Luo, Zexiang
    Zeng, Jing
    Liu, Zhen
    He, Hanbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
  • [28] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [29] Electrochemical activation of vanadium-based cathodes in aqueous zinc-ion batteries: Advances, challenges and prospects
    Liu, Shile
    Liao, Yanxin
    Liu, Tianrui
    Chen, Lingyun
    Zhang, Qichun
    ENERGY STORAGE MATERIALS, 2024, 73
  • [30] In Situ Electrochemical Activation Strategy toward Organic Cation Preintercalated Layered Vanadium-Based Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zhu, Yucheng
    Dong, Youzhong
    Li, Jianguo
    Li, Yunbo
    Fan, Qinghua
    Kuang, Quan
    Zhao, Yanming
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (11) : 16791 - 16801