Multispectral Image Analysis using Convolution Neural Networks

被引:0
|
作者
Kulkarni, Arun D. [1 ]
机构
[1] Univ Texas Tyler, Comp Sci Dept, Tyler, TX 75799 USA
关键词
Convolution neural networks; machine learning; multispectral images; remote sensing; DEEP; CLASSIFICATION;
D O I
10.14569/IJACSA.2023.0141002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Machine learning (ML) techniques are used often to classify pixels in multispectral images. Recently, there is growing interest in using Convolution Neural Networks (CNNs) for classifying multispectral images. CNNs are preferred because of high performance, advances in hardware such as graphical processing units (GPUs), and availability of several CNN architectures. In CNN, units in the first hidden layer view only a small image window and learn low level features. Deeper layers learn more expressive features by combining low level features. In this paper, we propose a novel approach to classify pixels in a multispectral image using deep convolution neural networks (DCNNs). In our approach, each feature vector is mapped to an image. We used the proposed framework to classify two Landsat scenes that are obtained from New Orleans and Juneau, Alaska areas. The suggested approach is compared with the commonly used classifiers such as the Decision Tree (DT), Support Vector Machine (SVM), and Random Forest (RF). The proposed approach has shown the state-of-the-art results.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 50 条
  • [41] Multispectral Camera Calibration Using Convolutional Neural Networks
    Trujillo, Ivan A. Juarez
    de Paz, Jonny P. Zavala
    Sandoval, Omar Palillero
    Velasquez, Francisco A. Castillo
    COMPUTACION Y SISTEMAS, 2023, 27 (03): : 801 - 810
  • [42] Low Light Image Enhancement by Multispectral Fusion and Convolutional Neural Networks
    Mei, Lin
    Jung, Cheolkon
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 203 - 209
  • [44] Pothole and Bump detection using Convolution Neural Networks
    Shah, Sandeep
    Deshmukh, Chandrakant
    2019 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE (ITEC-INDIA), 2019,
  • [45] Environmental Noise Classification Using Convolution Neural Networks
    Li, Mengyuan
    Gao, Zhenbin
    Zang, Xinzhe
    Wang, Xia
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON ELECTRONICS AND ELECTRICAL ENGINEERING TECHNOLOGY (EEET 2018), 2018, : 182 - 185
  • [46] Gait recognition using multichannel convolution neural networks
    Wang, Xiuhui
    Zhang, Jiajia
    Yan, Wei Qi
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 14275 - 14285
  • [47] Melanoma and Nevi Classification using Convolution Neural Networks
    Grove, Robert
    Green, Richard
    2020 35TH INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2020,
  • [48] Gait recognition using multichannel convolution neural networks
    Xiuhui Wang
    Jiajia Zhang
    Wei Qi Yan
    Neural Computing and Applications, 2020, 32 : 14275 - 14285
  • [49] Handwritten Digit Recognition using Convolution Neural Networks
    Rajput, Shailesh S.
    Choi, Yoonsuk
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 163 - 168
  • [50] Epileptic Seizure Detection Using Convolution Neural Networks
    Sukaria, William
    Malasa, James
    Kumar, Shiu
    Kumar, Rahul
    Assaf, Mansour H.
    Groza, Voicu
    Petriu, Emil M.
    Das, Sunil R.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA 2022), 2022,