Deep Learning for Automatic Prediction of Lymph Node Station Metastasis in Esophageal Cancer Patients from Contrast-Enhanced CT

被引:0
|
作者
Wang, Y. [1 ]
Zhu, J. [2 ]
Guo, D. [1 ]
Yan, K. [3 ]
Lu, L. [1 ]
Wang, S. [4 ]
Jin, D. [1 ]
Ye, X. [5 ]
Wang, Q. [2 ]
机构
[1] Alibaba Grp US Inc, New York, NY USA
[2] Sichuan Canc Hosp & Inst, Dept Radiat Oncol, Sichuan Canc Ctr, Radiat Oncol Key Lab Sichuan Prov, Chengdu, Peoples R China
[3] Alibaba DAMO Acad, Beijing, Peoples R China
[4] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai, Peoples R China
[5] Zhejiang Univ, Affiliated Hosp 1, Dept Radiat Oncol, Sch Med, Hangzhou, Peoples R China
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
205
引用
收藏
页码:S55 / S55
页数:1
相关论文
共 50 条
  • [21] Comparison of lymphatic contrast-enhanced ultrasound and intravenous contrast-enhanced ultrasound in the preoperative diagnosis of axillary sentinel lymph node metastasis in patients with breast cancer
    Zhuang, Lingling
    Ming, Xu
    Liu, Jun
    Jia, Chao
    Jin, Yubiao
    Wang, Jing
    Shi, Qiusheng
    Wu, Rong
    Jin, Lifang
    Du, Lianfang
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1130):
  • [22] Diagnostic accuracy of CT-based radiomics and deep learning for predicting lymph node metastasis in esophageal cancer
    Jannatdoust, Payam
    Valizadeh, Parya
    Pahlevan-Fallahy, Mohammad-Taha
    Hassankhani, Amir
    Amoukhteh, Melika
    Behrouzieh, Sadra
    Ghadimi, Delaram J.
    Bilgin, Cem
    Gholamrezanezhad, Ali
    CLINICAL IMAGING, 2024, 113
  • [23] Radiomics nomogram of contrast-enhanced spectral mammography for prediction of axillary lymph node metastasis in breast cancer: a multicenter study
    Ning Mao
    Ping Yin
    Qin Li
    Qinglin Wang
    Meijie Liu
    Heng Ma
    Jianjun Dong
    Kaili Che
    Zhongyi Wang
    Shaofeng Duan
    Xuexi Zhang
    Nan Hong
    Haizhu Xie
    European Radiology, 2020, 30 : 6732 - 6739
  • [24] Radiomics Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Sentinel Lymph Node Metastasis in Breast Cancer
    Liu, Jia
    Sun, Dong
    Chen, Linli
    Fang, Zheng
    Song, Weixiang
    Guo, Dajing
    Ni, Tiangen
    Liu, Chuan
    Feng, Lin
    Xia, Yuwei
    Zhang, Xiong
    Li, Chuanming
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [25] Radiomics nomogram of contrast-enhanced spectral mammography for prediction of axillary lymph node metastasis in breast cancer: a multicenter study
    Mao, Ning
    Yin, Ping
    Li, Qin
    Wang, Qinglin
    Liu, Meijie
    Ma, Heng
    Dong, Jianjun
    Che, Kaili
    Wang, Zhongyi
    Duan, Shaofeng
    Zhang, Xuexi
    Hong, Nan
    Xie, Haizhu
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6732 - 6739
  • [26] Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT
    Lee, Jeong Hoon
    Ha, Eun Ju
    Kim, Ju Han
    EUROPEAN RADIOLOGY, 2019, 29 (10) : 5452 - 5457
  • [27] Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT
    Jeong Hoon Lee
    Eun Ju Ha
    Ju Han Kim
    European Radiology, 2019, 29 : 5452 - 5457
  • [28] Deep multimodal learning for lymph node metastasis prediction of primary thyroid cancer
    Wu, Xinglong
    Li, Mengying
    Cui, Xin-Wu
    Xu, Guoping
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (03):
  • [29] Perfusion contrast-enhanced ultrasound to predict early lymph-node metastasis in breast cancer
    Naoko Mori
    Shunji Mugikura
    Minoru Miyashita
    Yumiko Kudo
    Mikiko Suzuki
    Li Li
    Yu Mori
    Shoki Takahashi
    Kei Takase
    Japanese Journal of Radiology, 2019, 37 : 145 - 153
  • [30] Perfusion contrast-enhanced ultrasound to predict early lymph-node metastasis in breast cancer
    Mori, Naoko
    Mugikura, Shunji
    Miyashita, Minoru
    Kudo, Yumiko
    Suzuki, Mikiko
    Li, Li
    Mori, Yu
    Takahashi, Shoki
    Takase, Kei
    JAPANESE JOURNAL OF RADIOLOGY, 2019, 37 (02) : 145 - 153