Sparse Approximate Multifrontal Factorization with Composite Compression Methods

被引:1
|
作者
Claus, Lisa [1 ]
Ghysels, Pieter [2 ]
Liu, Yang [2 ]
Nhan, Thai Anh [3 ]
Thirumalaisamy, Ramakrishnan [4 ]
Bhalla, Amneet Pal Singh [4 ]
Li, Sherry [2 ]
机构
[1] Natl Energy Res Sci Comp Ctr, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] Appl Math & Computat Res Div, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[3] Santa Clara Univ, Dept Math & Comp Sci, 500 El Camino Real, Santa Clara, CA 95053 USA
[4] San Diego State Univ, Dept Mech Engn, 5500 Campanile Dr, San Diego, CA 92182 USA
来源
关键词
Sparse direct solver; multifrontal method; butterfly algorithm; block low-rank compression; PARALLEL DIRECT SOLVER; PERFORMANCE; SCATTERING; MATRICES; DESIGN;
D O I
10.1145/3611662
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article presents a fast and approximate multifrontal solver for large sparse linear systems. In a recent work by Liu et al., we showed the efficiency of a multifrontal solver leveraging the butterfly algorithm and its hierarchical matrix extension, HODBF (hierarchical off-diagonal butterfly) compression to compress large frontal matrices. The resulting multifrontal solver can attain quasi-linear computation and memory complexity when applied to sparse linear systems arising from spatial discretization of high-frequencywave equations. To further reduce the overall number of operations and especially the factorization memory usage to scale to larger problem sizes, in this article we develop a composite multifrontal solver that employs the HODBF format for large-sized fronts, a reduced-memory version of the nonhierarchical block low-rank format for medium-sized fronts, and a lossy compression format for small-sized fronts. This allows us to solve sparse linear systems of dimension up to 2.7x larger than before and leads to a memory consumption that is reduced by 70% while ensuring the same execution time. The code is made publicly available in GitHub.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Parallel and fully recursive multifrontal sparse Cholesky
    Irony, D
    Shklarski, G
    Toledo, S
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2004, 20 (03): : 425 - 440
  • [42] Multifrontal incomplete factorization for indefinite and complex symmetric systems
    Qu, Y
    Fish, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 53 (06) : 1433 - 1459
  • [43] Algebraic multilevel methods and sparse approximate inverses
    Bollhöfer, M
    Mehrmann, V
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (01) : 191 - 218
  • [44] Multifrontal computation with the orthogonal factors of sparse matrices
    Lu, SM
    Barlow, JL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (03) : 658 - 679
  • [45] SOME RESULTS ON SPARSE BLOCK FACTORIZATION ITERATIVE METHODS
    GUO, CH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 145 : 187 - 199
  • [46] Multifrontal QR Factorization for Multicore Architectures over Runtime Systems
    Agullo, Emmanuel
    Buttari, Alfredo
    Guermouche, Abdou
    Lopez, Florent
    EURO-PAR 2013 PARALLEL PROCESSING, 2013, 8097 : 521 - 532
  • [47] ON THRESHOLD PIVOTING IN THE MULTIFRONTAL METHOD FOR SPARSE INDEFINITE SYSTEMS
    LIU, JWH
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1987, 13 (03): : 250 - 261
  • [48] An efficient block variant of robust structured multifrontal factorization method
    左宪禹
    莫则尧
    谷同祥
    Chinese Physics B, 2013, (08) : 229 - 236
  • [49] An efficient block variant of robust structured multifrontal factorization method
    Zuo Xian-Yu
    Mo Ze-Yao
    Gu Tong-Xiang
    CHINESE PHYSICS B, 2013, 22 (08)
  • [50] Approximate factorization of positive matrices by using methods of tropical optimization
    Krivulin, N. K.
    Romanova, E. Yu
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2020, 16 (04): : 357 - 374