Deep Reinforcement Learning-Based Adaptive Beam Tracking and Resource Allocation in 6G Vehicular Networks with Switched Beam Antennas

被引:2
|
作者
Ahmed, Tahir H. [1 ]
Tiang, Jun Jiat [1 ]
Mahmud, Azwan [1 ]
Gwo Chin, Chung [1 ]
Do, Dinh-Thuan [2 ]
机构
[1] Multimedia Univ, Ctr Wireless Technol, Cyberjaya 63000, Selangor, Malaysia
[2] Asia Univ, Coll Informat & Elect Engn, Dept Comp Sci & Informat Engn, Taichung 41354, Taiwan
关键词
vehicle-to-vehicle (V2V); switched beam antenna; deep reinforcement learning; 6G communication; SECURE; V2V;
D O I
10.3390/electronics12102294
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel switched beam antenna system model integrated with deep reinforcement learning (DRL) for 6G vehicle-to-vehicle (V2V) communications. The proposed system model aims to address the challenges of highly dynamic V2V environments, including rapid changes in channel conditions, interference, and Doppler effects. By leveraging the beam-switching capabilities of switched beam antennas and the intelligent decision making of DRL, the proposed approach enhances the performance of 6G V2V communications in terms of throughput, latency, reliability, and spectral efficiency. The proposed work develops a comprehensive mathematical model that accounts for 6G channel modeling, beam-switching, and beam-alignment errors. The Proposed DRL framework is designed to learn optimal beam-switching decisions in real time, adapting to the complex and varying V2V communication scenarios. The integration of the proposed antenna system and DRL model results in a robust solution that is capable of maintaining reliable communication links in a highly dynamic environment. To validate the proposed approach, extensive simulations were conducted and performance analysis using various performance metrics, such as throughput, latency, reliability, energy efficiency, resource utilization, and network scalability, was analyzed. Results demonstrate that the proposed system model significantly outperforms conventional V2V communication systems and other state-of-the-art techniques. Furthermore, the proposed approach shows that the beam-switching capabilities of the switched beam antenna system and the intelligent decision making of the DRL model are essential in addressing the challenges of 6G V2V communications.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Deep Reinforcement Learning Based Resource Allocation for Heterogeneous Networks
    Yang, Helin
    Zhao, Jun
    Lam, Kwok-Yan
    Garg, Sahil
    Wu, Qingqing
    Xiong, Zehui
    2021 17TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB 2021), 2021, : 253 - 258
  • [42] UAV-Assisted 5G/6G Networks: Joint Scheduling and Resource Allocation Based on Asynchronous Reinforcement Learning
    Yang, Helin
    Zhao, Jun
    Nie, Jiangtian
    Kumar, Neeraj
    Lam, Kwok-Yan
    Xiong, Zehui
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [43] Joint optimization of layering and power allocation for scalable VR video in 6G networks based on Deep Reinforcement Learning
    Yang, Junchao
    Zhang, Hui
    Jiao, Wenxin
    Guo, Zhiwei
    Alqahtani, Fayez
    Tolba, Amr
    Shen, Yu
    JOURNAL OF SYSTEMS ARCHITECTURE, 2025, 162
  • [44] Deep Reinforcement Learning-based Dynamic Service Migration in Vehicular Networks
    Peng, Yan
    Liu, Ling
    Zhou, Yiqing
    Shi, Jinglin
    Li, Jintao
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [45] Federated Deep Reinforcement Learning-Based Task Allocation in Vehicular Fog Computing
    Shi, Jinming
    Du, Jun
    Wang, Jian
    Yuan, Jian
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [46] Deep Learning-Based Channel Adaptive Resource Allocation in LoRaWAN
    Farhad, Arshad
    Kim, Dae-Ho
    Yoon, Jeong-Sun
    Pyun, Jae-Young
    2022 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2022,
  • [47] Deep Reinforcement Learning-Based Resource Allocation in Cooperative UAV-Assisted Wireless Networks
    Luong, Phuong
    Gagnon, Francois
    Tran, Le-Nam
    Labeau, Fabrice
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7610 - 7625
  • [48] Deep Reinforcement Learning-Based Video Offloading and Resource Allocation in NOMA-Enabled Networks
    Gao, Siyu
    Wang, Yuchen
    Feng, Nan
    Wei, Zhongcheng
    Zhao, Jijun
    FUTURE INTERNET, 2023, 15 (05):
  • [49] Spectral Clustering and Deep Reinforcement Learning-Based Dynamic Resource Allocation in SM-MIMO Vehicular System
    Mohamed, Abeer
    Bai, Zhiquan
    Pang, Ke
    Zhao, Jinqiu
    Xu, Hongji
    Zhang, Lei
    Ji, Yuxiong
    Kwak, Kyungsup
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3777 - 3792
  • [50] Deep Reinforcement Learning-Based Resource Allocation for RSMA in LEO Satellite-Terrestrial Networks
    Huang, Jingfei
    Yang, Yang
    Lee, Jemin
    He, Dazhong
    Li, Yonghui
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (03) : 1341 - 1354