The chromosome-level genome of Chinese praying mantis Tenodera sinensis (Mantodea: Mantidae) reveals its biology as a predator

被引:1
|
作者
Yuan, Ruizhong [1 ,2 ,3 ]
Zheng, Boying [1 ,2 ,3 ]
Li, Zekai [1 ,2 ,3 ]
Ma, Xingzhou [1 ,2 ,3 ]
Shu, Xiaohan [1 ,2 ,3 ,4 ]
Qu, Qiuyu [1 ,2 ,3 ,4 ]
Ye, Xiqian [1 ,2 ,3 ]
Li, Sheng [5 ,6 ]
Tang, Pu [1 ,2 ,3 ]
Chen, Xuexin [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Univ, Inst Insect Sci, Coll Agr & Biotechnol, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, State Key Lab Rice Biol, Minist Agr Key Lab Mol Biol Crop Pathogens & Inse, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Zhejiang Prov Key Lab Biol Crop Pathogens & Insec, Hangzhou 310058, Peoples R China
[4] Zhejiang Univ, Hainan Inst, Sanya 572025, Peoples R China
[5] South China Normal Univ, Inst Insect Sci & Technol, Sch Life Sci, Guangdong Prov Key Lab Insect Dev Biol & Appl Tec, Guangzhou 510631, Peoples R China
[6] South China Normal Univ, Guangmeiyuan R&D Ctr, Guangdong Prov Key Lab Insect Dev Biol & Appl Tec, Meizhou 514779, Peoples R China
来源
GIGASCIENCE | 2023年 / 12卷
基金
中国国家自然科学基金;
关键词
Mantodea; Tenodera sinensis; chromosome; insect genomics; mantis; dig estive demand; predation behavior; TRANSPOSABLE ELEMENTS; EVOLUTION; ANNOTATION; ALIGNMENT; SEQUENCE; PROGRAM; SYSTEM; VISION; RECONSTRUCTION; VISUALIZATION;
D O I
10.1093/gigascience/giad090
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The Chinese praying mantis, Tenodera sinensis (Saussure), is a carnivorous insect that preys on a variety of arthropods and small vertebrates, including pest species. Several studies have been conducted to understand its behavior and physiology. However, there is limited knowledge about the genetic information underlying its genome evolution, digestive demands, and predatory behaviors. Findings: Here we have assembled the chromosome-level genome of T. sinensis, representing the first sequenced genome of the family Mantidae, with a genome size of 2.54 Gb and scaffold N50 of 174.78 Mb. Our analyses revealed that 98.6% of BUSCO genes are present, resulting in a well-annotated assembly compared to other insect genomes, containing 25,022 genes. The reconstructed phylogenetic analysis showed the expected topology placing the praying mantis in an appropriate position. Analysis of transposon elements suggested the Gypsy/Dirs family, which belongs to long terminal repeat (LTR) transposons, may be a key factor resulting in the larger genome size. The genome shows expansions in several digestion and detoxification associated gene families, including trypsin and glycosyl hydrolase (GH) genes, ATP-binding cassette (ABC) transporter, and carboxylesterase (CarE), reflecting the possible genomic basis of digestive demands. Furthermore, we have found 1 ultraviolet-sensitive opsin and 2 long-wavelength-sensitive (LWS) opsins, emphasizing the core role of LWS opsins in regulating predatory behaviors. Conclusions: The high-quality genome assembly of the praying mantis provides a valuable repository for studying the evolutionary patterns of the mantis genomes and the gene expression profiles of insect predators.
引用
收藏
页数:14
相关论文
共 26 条
  • [1] The chromosome-level genome of Chinese praying mantis Tenodera sinensis (Mantodea: Mantidae) reveals its biology as a predator
    Yuan, Ruizhong
    Zheng, Boying
    Li, Zekai
    Ma, Xingzhou
    Shu, Xiaohan
    Qu, Qiuyu
    Ye, Xiqian
    Li, Sheng
    Tang, Pu
    Chen, Xuexin
    GIGASCIENCE, 2023, 12
  • [2] Life history and Morphometry of the Chinese Praying Mantis, Tenodera aridifolia sinensis (Blattopteroidea: Mantodea)
    Kaltenpoth, M
    ENTOMOLOGIA GENERALIS, 2005, 28 (01) : 1 - 16
  • [3] A long-read draft assembly of the Chinese mantis (Mantodea: Mantidae: Tenodera sinensis) genome reveals patterns of ion channel gain and loss across Arthropoda
    Goldberg, Jay K.
    Godfrey, R. Keating
    Barrett, Meghan
    G3-GENES GENOMES GENETICS, 2024, 14 (06):
  • [4] A chromosome-level genome assembly of the Chinese tupelo Nyssa sinensis
    Yang, Xuchen
    Kang, Minghui
    Yang, Yanting
    Xiong, Haifeng
    Wang, Mingcheng
    Zhang, Zhiyang
    Wang, Zefu
    Wu, Haolin
    Ma, Tao
    Liu, Jianquan
    Xi, Zhenxiang
    SCIENTIFIC DATA, 2019, 6 (1)
  • [5] A chromosome-level genome assembly of the Chinese tupelo Nyssa sinensis
    Xuchen Yang
    Minghui Kang
    Yanting Yang
    Haifeng Xiong
    Mingcheng Wang
    Zhiyang Zhang
    Zefu Wang
    Haolin Wu
    Tao Ma
    Jianquan Liu
    Zhenxiang Xi
    Scientific Data, 6
  • [6] A chromosome-level genome assembly of Chinese quince (Pseudocydonia sinensis)
    Yang, Ying
    Liu, Jin Feng
    Jiang, Xian Feng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [7] A high-quality chromosome-level genome assembly of the Chinese medaka Oryzias sinensis
    Dong, Zhongdian
    Wang, Jiangman
    Chen, Guozhu
    Guo, Yusong
    Zhao, Na
    Wang, Zhongduo
    Zhang, Bo
    SCIENTIFIC DATA, 2024, 11 (01)
  • [8] Chromosome-Level Genome Assembly of the Leafcutter Bee Megachile Rotundata Reveals Its Ecological Adaptation and Pollination Biology
    Shi, Rangjun
    Duan, Pan
    Zhu, Mengmeng
    Zhang, Rong
    Zhao, Zihua
    Nie, Xin
    He, Hanhou
    Hou, Li
    Wang, Xianhui
    ADVANCED SCIENCE, 2025,
  • [9] Chromosome-level genome assembly of the predator Propylea japonica to understand its tolerance to insecticides and high temperatures
    Zhang, Lijuan
    Li, Song
    Luo, Junyu
    Du, Pei
    Wu, Linke
    Li, Yarong
    Zhu, Xiangzhen
    Wang, Li
    Zhang, Shuai
    Cui, Jinjie
    MOLECULAR ECOLOGY RESOURCES, 2020, 20 (01) : 292 - 307
  • [10] A chromosome-level genome assembly for Chinese plum ‘Wushancuili' reveals the molecular basis of its fruit color and susceptibility to rain-cracking
    Kun Zhou
    Jingwen Wang
    Lin Pan
    Fang Xiang
    Yi Zhou
    Wei Xiong
    Ming Zeng
    Donald Grierson
    Wenbin Kong
    Lingyu Hu
    Wanpeng Xi
    Horticultural Plant Journal, 2024, (03) : 672 - 688