NUMERICAL RANGE FOR WEIGHTED MOORE-PENROSE INVERSE OF TENSOR

被引:0
|
作者
Be, Aaisha [1 ]
Shekhar, Vaibhav [2 ,3 ]
Mishra, Debasisha [1 ]
机构
[1] Natl Inst Technol, Dept Math, Raipur 492010, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
[3] Govt Engn Coll, Dept Appl Sci & Humanities, Sheikhpura 811105, Bihar, India
来源
关键词
Tensor; Einstein product; Numerical range; Numerical radius; Weighted Moore-Penrose inverse; MATRICES; RADIUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article first introduces the notion of weighted singular value decomposition (WSVD) of a tensor via the Einstein product. The WSVD is then used to compute the weighted Moore-Penrose inverse of an arbitrary-order tensor. We then define the notions of weighted normal tensor for an even-order square tensor and weighted tensor norm. Finally, we apply these to study the theory of numerical range for the weighted Moore-Penrose inverse of an even-order square tensor and exploit its several properties. We also obtain a few new results in matrix setting.
引用
收藏
页码:140 / 171
页数:32
相关论文
共 50 条
  • [41] An accelerated iterative method for computing weighted Moore-Penrose inverse
    Soleymani, F.
    Stanimirovic, Predrag S.
    Ullah, Malik Zaka
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 365 - 371
  • [42] Perturbation theory for Moore-Penrose inverse of tensor via Einstein product
    Ma, Haifeng
    Li, Na
    Stanimirovic, Predrag S.
    Katsikis, Vasilios N.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (03):
  • [43] Numerical Radius and Norm Bounds via the Moore-Penrose Inverse
    Sababheh, Mohammad
    Djordjevic, Dragan S.
    Moradi, Hamid Reza
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (05)
  • [44] Representation of the Weighted Moore-Penrose Inverse in Terms of Inverses of Quaternion Matrix
    Yuan, Wangui
    Liao, Zuhua
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 411 - 413
  • [45] An interval extension of SMS method for computing weighted Moore-Penrose inverse
    Roy, Falguni
    Gupta, D. K.
    Stanimirovic, Predrag S.
    CALCOLO, 2018, 55 (02)
  • [46] NUMERICAL ALGORITHMS FOR MOORE-PENROSE INVERSE OF A MATRIX - ITERATIVE METHODS
    SHINOZAK.N
    SIBUYA, M
    TANABE, K
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1972, 24 (03) : 621 - 629
  • [47] NUMERICAL ALGORITHMS FOR MOORE-PENROSE INVERSE OF A MATRIX - DIRECT METHODS
    SHINOZAK.N
    SIBUYA, M
    TANABE, K
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1972, 24 (01) : 193 - 203
  • [48] Improved numerical radius bounds using the Moore-Penrose inverse ☆
    Bhunia, Pintu
    Kittaneh, Fuad
    Sahoo, Satyajit
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 711 : 1 - 16
  • [49] The symmetry of a Moore-Penrose inverse - Solution
    Goerlich, F
    ECONOMETRIC THEORY, 1997, 13 (05) : 766 - 767
  • [50] An efficient hyperpower iterative method for computing weighted Moore-Penrose inverse
    Kaur, Manpreet
    Kansal, Munish
    Kumar, Sanjeev
    AIMS MATHEMATICS, 2020, 5 (03): : 1680 - 1692