Cubic anisotropy of hole Zeeman splitting in semiconductor nanocrystals

被引:2
|
作者
Semina, M. A. [1 ]
Golovatenko, A. A. [1 ]
Rodina, A. V. [1 ]
机构
[1] Ioffe Inst, St Petersburg 194021, Russia
基金
俄罗斯科学基金会;
关键词
ELECTRON G-FACTOR; GROUND-STATE; CYCLOTRON-RESONANCE; MAGNETIC-FIELD; FINE-STRUCTURE; WAVE-FUNCTIONS; QUANTUM DOTS; ACCEPTOR; ENERGY; EXCITON;
D O I
10.1103/PhysRevB.108.235310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically cubic anisotropy of Zeeman splitting of a hole confined in a semiconductor nanocrystal. This anisotropy originates from three contributions: crystallographic cubically symmetric spin and kinetic energy terms in the bulk Luttinger Hamiltonian and the spatial wave function distribution in a cube-shaped nanocrystal. From symmetry considerations, an effective Zeeman Hamiltonian for the hole's lowest even state is introduced, containing a spherically symmetric and a cubically symmetric term. The values of these terms are calculated numerically for spherical and cube-shaped nanocrystals as functions of the Luttinger Hamiltonian parameters. We demonstrate that the cubic shape of the nanocrystal and the cubic anisotropy of hole kinetic energy (so-called valence band warping) significantly affect effective g factors of hole states. In both cases, the effect comes from the cubic symmetry of the hole wave functions in a zero magnetic field. Estimations for the effective g factor values in several semiconductors with zinc-blende crystal lattices are made. Possible experimental manifestations and potential methods for measuring of the cubic anisotropy of the hole Zeeman splitting are suggested.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Highly nonlinear Zeeman splitting of excitons in semiconductor quantum wells
    Traynor, N. J.
    Warburton, R. J.
    Snelling, M. J.
    Harley, R. T.
    Physical Review B: Condensed Matter, 55 (23):
  • [22] Raman spectrum of nanocrystals: Phonon dispersion splitting and anisotropy
    Falcao, Bruno P.
    Leitao, Joaquim P.
    Aguas, Hugo
    Pereira, Rui N.
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [23] Giant anisotropy of Zeeman splitting of quantum confined acceptors in Si/Ge
    Haendel, KM
    Winkler, R
    Denker, U
    Schmidt, OG
    Haug, RJ
    PHYSICAL REVIEW LETTERS, 2006, 96 (08) : 1 - 4
  • [24] Nanolaser on heavy hole transition in semiconductor nanocrystals
    Pokutnyi, SL
    Salejda, W
    Jacak, L
    Misiewicz, J
    Tyc, M
    OPTICA APPLICATA, 2002, 32 (1-2) : 147 - 156
  • [25] Zeeman splitting of light hole in quantum wells: Comparison of theory and experiments
    Durnev, M. V.
    PHYSICS OF THE SOLID STATE, 2014, 56 (07) : 1416 - 1423
  • [26] Zeeman splitting of light hole in quantum wells: Comparison of theory and experiments
    M. V. Durnev
    Physics of the Solid State, 2014, 56 : 1416 - 1423
  • [27] Anisotropy of a hole magnetic polaron in a semimagnetic semiconductor
    Linnik, TL
    Rubo, YG
    Sheka, VI
    JETP LETTERS, 1996, 63 (03) : 222 - 226
  • [28] Anisotropic zeeman splitting in ballistic one-dimensional hole systems
    Danneau, R.
    Klochan, O.
    Clarke, W. R.
    Ho, L. H.
    Micolich, A. P.
    Simmons, M. Y.
    Hamilton, A. R.
    Peppers, M.
    Ritchie, D. A.
    Zuelicke, U.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 699 - +
  • [29] Highly anisotropic Zeeman splitting of two-dimensional hole systems
    Winkler, R
    Papadakis, SJ
    De Poortere, EP
    Shayegan, M
    PHYSICA E, 2001, 10 (1-3): : 62 - 66
  • [30] Faceting-Controlled Zeeman Splitting in Plasmonic TiO2 Nanocrystals
    Yin, Penghui
    Hegde, Manu
    Garnet, Natalie S.
    Tan, Yi
    Radovanovic, Pavle V.
    NANO LETTERS, 2019, 19 (09) : 6695 - 6702