Cubic anisotropy of hole Zeeman splitting in semiconductor nanocrystals

被引:2
|
作者
Semina, M. A. [1 ]
Golovatenko, A. A. [1 ]
Rodina, A. V. [1 ]
机构
[1] Ioffe Inst, St Petersburg 194021, Russia
基金
俄罗斯科学基金会;
关键词
ELECTRON G-FACTOR; GROUND-STATE; CYCLOTRON-RESONANCE; MAGNETIC-FIELD; FINE-STRUCTURE; WAVE-FUNCTIONS; QUANTUM DOTS; ACCEPTOR; ENERGY; EXCITON;
D O I
10.1103/PhysRevB.108.235310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study theoretically cubic anisotropy of Zeeman splitting of a hole confined in a semiconductor nanocrystal. This anisotropy originates from three contributions: crystallographic cubically symmetric spin and kinetic energy terms in the bulk Luttinger Hamiltonian and the spatial wave function distribution in a cube-shaped nanocrystal. From symmetry considerations, an effective Zeeman Hamiltonian for the hole's lowest even state is introduced, containing a spherically symmetric and a cubically symmetric term. The values of these terms are calculated numerically for spherical and cube-shaped nanocrystals as functions of the Luttinger Hamiltonian parameters. We demonstrate that the cubic shape of the nanocrystal and the cubic anisotropy of hole kinetic energy (so-called valence band warping) significantly affect effective g factors of hole states. In both cases, the effect comes from the cubic symmetry of the hole wave functions in a zero magnetic field. Estimations for the effective g factor values in several semiconductors with zinc-blende crystal lattices are made. Possible experimental manifestations and potential methods for measuring of the cubic anisotropy of the hole Zeeman splitting are suggested.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Crystallographic anisotropy of the Zeeman splitting in 1D hole quantum wires
    Klochan, O.
    Micolich, A. P.
    Ho, L. H.
    Hamilton, A. R.
    Muraki, K.
    Hirayama, Y.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (04): : 967 - 970
  • [2] Theory of the Zeeman effect in semiconductor nanocrystals
    Rodina, AV
    Efros, AL
    Rosen, M
    Meyer, BK
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2002, 19 (1-2): : 435 - 438
  • [3] Anisotropy of Zeeman-splitting in quantum dots
    Könemann, J
    Fal'ko, VI
    Maude, DK
    Haug, RJ
    Physics of Semiconductors, Pts A and B, 2005, 772 : 815 - 816
  • [4] ANISOTROPY OF THE CONDUCTION ELECTRON ZEEMAN SPLITTING IN RHODIUM
    OHLSEN, H
    GUSTAFSSON, P
    NORDBORG, L
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1986, 16 (04): : L79 - L82
  • [5] Zeeman splitting in ballistic hole quantum wires
    Danneau, R.
    Klochan, O.
    Clarke, W. R.
    Ho, L. H.
    Micolich, A. P.
    Simmons, M. Y.
    Hamilton, A. R.
    Pepper, M.
    Ritchie, D. A.
    Zulicke, U.
    PHYSICAL REVIEW LETTERS, 2006, 97 (02)
  • [6] Zeeman splitting in cylindrical hole quantum wires
    Zuelicke, U.
    Csontos, D.
    CURRENT APPLIED PHYSICS, 2008, 8 (3-4) : 237 - 240
  • [7] ANISOTROPY OF THE ITINERANT-ELECTRON ZEEMAN SPLITTING IN IRIDIUM
    GUSTAFSSON, P
    OHLSEN, H
    NORDBORG, L
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1987, 17 (01): : 117 - 122
  • [8] ANISOTROPY OF CONDUCTION ELECTRONS ZEEMAN SPLITTING IN PALLADIUM AND GOLD
    GRECHNEV, GE
    SAVCHENKO, NV
    SVECHKAREV, IV
    ANTONOV, VN
    ZHALKOTITARENKO, AV
    LEE, MJG
    PERZ, JM
    FIZIKA NIZKIKH TEMPERATUR, 1987, 13 (11): : 1219 - 1222
  • [9] Tuning the Photoluminescence Anisotropy of Semiconductor Nanocrystals
    Yuan, Gangcheng
    Higginbotham, Heather F.
    Han, Jiho
    Yadav, Anchal
    Kirkwood, Nicholas
    Mulvaney, Paul
    Bell, Toby D. M.
    Cole, Jared H.
    Funston, Alison M.
    ACS NANO, 2023, 17 (19) : 19109 - 19120
  • [10] ZEEMAN SPLITTING OF NO PHONON LINE OF GREEN EMISSION IN CUBIC SIC
    HARTMAN, RL
    DEAN, PJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (01): : 32 - &