Optimizing impedance matching parameters for single-frequency capacitively coupled plasma via machine learning

被引:3
|
作者
Cao, Dehen [1 ]
Yu, Shimin [2 ]
Chen, Zili [2 ]
Wang, Yu [1 ]
Wang, Hongyu [3 ]
Chen, Zhipeng [2 ]
Jiang, Wei [1 ,2 ]
Zhang, Ya [4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Int Joint Res Lab Magnet Confinement Fus & Plasma, Wuhan 430074, Peoples R China
[3] Anshan Normal Univ, Sch Phys Sci & Technol, Anshan 114000, Peoples R China
[4] Wuhan Univ Technol, Dept Phys, Wuhan 430070, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
OPTICAL-EMISSION SPECTROSCOPY; SURFACE MODIFICATION; ARGON; ATOMS;
D O I
10.1116/5.0173921
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Impedance matching plays a critical role in achieving stable and controllable plasma conditions in capacitive coupled plasma (CCP) systems. However, due to the complex circuit system, the nonlinear relationships between components, and the extensive parameter space of the matching network, finding optimal component values pose significant challenges. To address this, we employ an artificial neural network as a surrogate model for the matching system, leveraging its powerful pattern learning capability for a reliable and efficient search for matching parameters. In this paper, we designed four different parameters as optimization objectives and took the modulus of the reflection coefficient as an example to demonstrate the impedance matching optimization process of a CCP in detail using a particle-in-cell/Monte Carlo collision model. Our approach not only provides an effective optimization direction but also furnishes an entire parameter space that aligns with expectations, rather than just a single point. Moreover, the method presented in this paper is applicable to both numerical simulations and experimental matching parameter optimization.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Space and phase resolved plasma parameters in an industrial dual-frequency capacitively coupled radio-frequency discharge
    Schulze, J.
    Gans, T.
    O'Connell, D.
    Czarnetzki, U.
    Ellingboe, A. R.
    Turner, M. M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (22) : 7008 - 7018
  • [22] Measurements of plasma parameters in capacitively coupled radio frequency plasma from discharge characteristics: Correlation with optical emission spectroscopy
    Bora, B.
    Bhuyan, H.
    Favre, M.
    Wyndham, E.
    Chuaqui, H.
    Wong, C. S.
    CURRENT APPLIED PHYSICS, 2013, 13 (07) : 1448 - 1453
  • [23] DESIGN OF A FIXED-FREQUENCY IMPEDANCE MATCHING NETWORK AND MEASUREMENT OF PLASMA IMPEDANCE IN AN INDUCTIVELY COUPLED PLASMA FOR ATOMIC EMISSION-SPECTROSCOPY
    ALLEMAND, CD
    BARNES, RM
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1978, 33 (08) : 513 - 534
  • [24] Plasma density and ion energy control via driving frequency and applied voltage in a collisionless capacitively coupled plasma discharge
    Sharma, Sarveshwar
    Sen, Abhijit
    Sirse, N.
    Turner, M. M.
    Ellingboe, A. R.
    PHYSICS OF PLASMAS, 2018, 25 (08)
  • [25] Numerical estimation of Fricke-Morse impedance model parameters using single-frequency sinusoidal excitation
    Zhang, Fu
    Sanchez, Benjamin
    Rutkove, Seward B.
    Yang, Yuxiang
    Zhong, Haowen
    Li, Jianmin
    Teng, Zhaosheng
    PHYSIOLOGICAL MEASUREMENT, 2019, 40 (09)
  • [26] Influence of External Input Parameters on Species Production in a Dual-Frequency Capacitively Coupled Radio-frequency Oxygen Plasma
    Ziane Kechidi
    Abdelatif Tahraoui
    Arabian Journal for Science and Engineering, 2020, 45 : 441 - 453
  • [27] Influence of External Input Parameters on Species Production in a Dual-Frequency Capacitively Coupled Radio-frequency Oxygen Plasma
    Kechidi, Ziane
    Tahraoui, Abdelatif
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (01) : 441 - 453
  • [28] Optimizing the Parameters for Post-processing Consumer Photos via Machine Learning
    Bie, Linlin
    Wang, Xu
    Korhonen, Jari
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1504 - 1509
  • [29] Optimizing additive manufacturing parameters for martensitic stainless steel via machine learning
    Wu, Lingzhi
    Zhang, Cong
    Jiang, Xue
    Zhang, Ruijie
    Wang, Yongwei
    Yin, Haiqing
    Liu, Geng
    Su, Jie
    Qu, Xuanhui
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [30] Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF4 Plasma Using Optical Emission Spectroscopy
    刘文耀
    朱爱民
    李小松
    赵国利
    陆文琪
    徐勇
    王友年
    Plasma Science and Technology, 2013, 15 (09) : 885 - 890