Individual Participant Data Meta-Analysis Including Moderators: Empirical Validation

被引:2
|
作者
Moeyaert, Mariola [1 ,3 ]
Yang, Panpan [2 ]
Xue, Yukang [1 ]
机构
[1] Univ Albany SUNY, Albany, NY USA
[2] Princeton Univ, Princeton, NJ USA
[3] Univ Albany SUNY, Sch Educ, Dept Educ & Counseling Psychol, Div Educ Psychol & Methodol, 1400 Washington Ave, Albany, NY 12222 USA
来源
JOURNAL OF EXPERIMENTAL EDUCATION | 2024年 / 92卷 / 04期
关键词
Individual patient meta-analysis; meta-analysis; moderators; Monte Carlo simulation study; simulation studies; single-case experimental design; QUANTITATIVE SYNTHESIS; EFFECT SIZE; MODELS; DESIGNS;
D O I
10.1080/00220973.2023.2208062
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We have entered an era in which scientific evidence increasingly informs research practice and policy. As there is an exponential increase in the use of single-case experimental designs (SCEDs) to evaluate intervention effectiveness, there is accumulating evidence available for quantitative synthesis. Consequently, there is a growing interest in techniques suitable to meta-analyze SCED research. One technique that can be applied is individual patient data (IPD) meta-analysis. IPD is a flexible approach, allowing for a variety of modeling options such as modeling moderators to explain intervention heterogeneity. To date, no methodological research has been conducted to evaluate the statistical properties of effect estimates obtained by using IPD meta-analysis with the inclusion of moderators. This study is designed to address this by conducting a large-scale Monte Carlo study. Based on the results, specific recommendations are provided to indicate under which conditions the IPD meta-analysis including moderators is suitable.
引用
收藏
页码:723 / 740
页数:18
相关论文
共 50 条
  • [41] Malaria, malnutrition, and birthweight: A meta-analysis using individual participant data
    Cates, Jordan E.
    Unger, Holger W.
    Briand, Valerie
    Fievet, Nadine
    Valea, Innocent
    Tinto, Halidou
    D'Alessandro, Umberto
    Landis, Sarah H.
    Adu-Afarwuah, Seth
    Dewey, Kathryn G.
    Ter Kuile, Feiko O.
    Desai, Meghna
    Dellicour, Stephanie
    Ouma, Peter
    Gutman, Julie
    Oneko, Martina
    Slutsker, Laurence
    Terlouw, Dianne J.
    Kariuki, Simon
    Ayisi, John
    Madanitsa, Mwayiwawo
    Mwapasa, Victor
    Ashorn, Per
    Maleta, Kenneth
    Mueller, Ivo
    Stanisic, Danielle
    Schmiegelow, Christentze
    Lusingu, John P. A.
    van Eijk, Anna Maria
    Bauserman, Melissa
    Adair, Linda
    Cole, Stephen R.
    Westreich, Daniel
    Meshnick, Steven
    Rogerson, Stephen
    PLOS MEDICINE, 2017, 14 (08)
  • [42] Duration of Breastfeeding and Risk of SIDS: An Individual Participant Data Meta-analysis
    Thompson, John M. D.
    Tanabe, Kawai
    Moon, Rachel Y.
    Mitchell, Edwin A.
    McGarvey, Cliona
    Tappin, David
    Blair, Peter S.
    Hauck, Fern R.
    PEDIATRICS, 2017, 140 (05)
  • [43] Causally interpretable meta-analysis combining aggregate and individual participant data
    Rott, Kollin W.
    Clark, Justin M.
    Murad, M. Hassan
    Hodges, James S.
    Huling, Jared D.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2025,
  • [44] Antihypertensive treatment and risk of cancer: an individual participant data meta-analysis
    Copland, Emma
    Canoy, Dexter
    Nazarzadeh, Milad
    Bidel, Zeinab
    Ramakrishnan, Rema
    Woodward, Mark
    Chalmers, John
    Teo, Koon K.
    Pepine, Carl J.
    Davis, Barry R.
    Kjeldsen, Sverre
    Sundstrom, Johan
    Rahimi, Kazem
    LANCET ONCOLOGY, 2021, 22 (04): : 558 - 570
  • [45] Challenges In Performing An Individual Participant-level Data Meta-analysis
    van der Worp, Henk
    Holtman, Gea A.
    Blanker, Marco H.
    EUROPEAN UROLOGY FOCUS, 2023, 9 (05): : 705 - 707
  • [46] Hydroxychloroquine in the pregnancies of women with lupus: a meta-analysis of individual participant data
    Clowse, Megan E. B.
    Eudy, Amanda M.
    Balevic, Stephen
    Sanders-Schmidler, Gillian
    Kosinski, Andrzej
    Fischer-Betz, Rebecca
    Gladman, Dafna D.
    Molad, Yair
    Nalli, Cecilia
    Mokbel, Abir
    Tincani, Angela
    Urowitz, Murray
    Bay, Caroline
    van Noord, Megan
    Petri, Michelle
    LUPUS SCIENCE & MEDICINE, 2022, 9 (01):
  • [47] Quantifying heterogeneity in individual participant data meta-analysis with binary outcomes
    Chen, Bo
    Benedetti, Andrea
    SYSTEMATIC REVIEWS, 2017, 6
  • [48] An Empirical Comparison of Meta-analysis and Mega-analysis of Individual Participant Data for Identifying Gene-Environment Interactions
    Sung, Yun Ju
    Schwander, Karen
    Arnett, Donna K.
    Kardia, Sharon L. R.
    Rankinen, Tuomo
    Bouchard, Claude
    Boerwinkle, Eric
    Hunt, Steven C.
    Rao, Dabeeru C.
    GENETIC EPIDEMIOLOGY, 2014, 38 (04) : 369 - 378
  • [49] External validation of risk prediction model for gestational diabetes: Individual participant data meta-analysis of randomized trials
    Ranasinha, Sanjeeva
    Enticott, Joanne
    Harrison, Cheryce L.
    Thangaratinam, Shakila
    Wang, Rui
    Teede, Helena J.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 190
  • [50] Development and validation of a prediction model for fat mass in children and adolescents: meta-analysis using individual participant data
    Hudda, Mohammed T.
    Fewtrell, Mary S.
    Haroun, Dalia
    Lum, Sooky
    Williams, Jane E.
    Wells, Jonathan C. K.
    Riley, Richard D.
    Owen, Christopher G.
    Cook, Derek G.
    Rudnicka, Alicja R.
    Whincup, Peter H.
    Nightingale, Claire M.
    BMJ-BRITISH MEDICAL JOURNAL, 2019, 366