Vehicle detection and traffic density estimation using ensemble of deep learning models

被引:7
|
作者
Mittal, Usha [1 ]
Chawla, Priyanka [1 ]
机构
[1] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara, Punjab, India
关键词
Detection; Traffic density; Ensemble; SSD; Faster R-CNN; Convolutional neural network; Deep learning; CLASSIFICATION;
D O I
10.1007/s11042-022-13659-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic density estimation can be used for controlling traffic light signals to provide effective traffic management. It can be done in two steps: vehicle recognition and counting. Deep learning (DL) technologies are being explored more and more as CNN grows in popularity. In this study, initially, data was collected from various open-source libraries that is FLIR, KITTI, and MB7500. Vehicles in the images are labelled in six different classes. To deal with an imbalanced dataset, data augmentation techniques were applied. Then, a model based on an ensemble of the faster region-based convolutional neural networks (Faster R-CNN) and Single-shot detector (SSD) were trained on finally processed datasets. The results of the proposed model were compared with base estimators of the FLIR dataset (Thermal and RGB images separately), MB7500, and KITTI dataset. Experimental results depict that the highest mAP obtained was 94% by the proposed Ensemble on FLIR thermal dataset which was 34% better than SSD and 6% from the Faster R-CNN model. Overall, the proposed ensemble achieves better and more promising results as compared to base estimators. Experimental results also show that detection with thermal images was better than visible images. In addition, three algorithms were compared for estimated density and the proposed model shows significant potential for traffic density estimation.
引用
收藏
页码:10397 / 10419
页数:23
相关论文
共 50 条
  • [31] Deepfake Audio Detection Using Spectrogram-based Feature and Ensemble of Deep Learning Models
    Lam Pham
    Phat Lam
    Truong Nguyen
    Huyen Nguyen
    Schindler, Alexander
    2024 IEEE 5TH INTERNATIONAL SYMPOSIUM ON THE INTERNET OF SOUNDS, IS2 2024, 2024, : 170 - 174
  • [32] A novel approach for explicit song lyrics detection using machine and deep ensemble learning models
    Chen, Xiaoyuan
    Aljrees, Turki
    Umer, Muhammad
    Karamti, Hanen
    Tahir, Saba
    Abuzinadah, Nihal
    Alnowaiser, Khaled
    Eshmawi, Ala' Abdulmajid
    Mohamed, Abdullah
    Ashraf, Imran
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [33] Pneumonia detection in chest X-ray images using an ensemble of deep learning models
    Kundu, Rohit
    Das, Ritacheta
    Geem, Zong Woo
    Han, Gi-Tae
    Sarkar, Ram
    PLOS ONE, 2021, 16 (09):
  • [34] Lung cancer detection from thoracic CT scans using an ensemble of deep learning models
    Nandita Gautam
    Abhishek Basu
    Ram Sarkar
    Neural Computing and Applications, 2024, 36 : 2459 - 2477
  • [35] Lung cancer detection from thoracic CT scans using an ensemble of deep learning models
    Gautam, Nandita
    Basu, Abhishek
    Sarkar, Ram
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (05): : 2459 - 2477
  • [36] Application layer classification of Internet traffic using ensemble learning models
    Arfeen, Asad
    Ul Haq, Khizar
    Yasir, Syed Muhammad
    INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2021, 31 (04)
  • [37] New Methods of Density Estimation for Vehicle Traffic
    Kababulut, Fevzi Yasin
    Kuntalp, Damla
    Duzenli, Timur
    2015 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2015, : 223 - 226
  • [38] Harnessing ensemble deep learning models for precise detection of gynaecological cancers
    Kwatra, Chetna Vaid
    Kaur, Harpreet
    Potharaju, Saiprasad
    Tambe, Swapnali N.
    Jadhav, Devyani Bhamare
    Tambe, Sagar B.
    CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH, 2025, 32
  • [39] A Comparative Study of Ensemble Deep Learning Models for Skin Cancer Detection
    Kolachina, Srinivasa Kranthi Kiran
    Agada, Ruth
    Li, Wenting
    2023 11TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, ICBCB, 2023, : 175 - 181
  • [40] Ensemble of Deep Learning Models for Sleep Apnea Detection: An Experimental Study
    Mukherjee, Debadyuti
    Dhar, Koustav
    Schwenker, Friedhelm
    Sarkar, Ram
    SENSORS, 2021, 21 (16)