Accurate and reliable estimation of performance degradation in proton exchange membrane fuel cells (PEMFCs) can contribute to the maintenance and risk management of fuel cell systems. However, current research overly emphasizes model ensemble strategies and data preprocessing, neglecting the improvement of internal mechanisms within the models. Few models can adequately capture the long-term dependencies of relevant features. In this study, a dual-stage attention mechanism (DA) network structure called DA-LSTM was developed based on the Long Short-Term Memory (LSTM) neural network to predict the performance degradation of PEMFCs. In the first stage, an input attention mechanism is introduced, utilizing an encoder to adaptively extract important information from each time step of the input features. In the second stage, a temporal attention mechanism is employed to obtain relevant temporal attention factors across all time steps. The proposed approach is tested on various datasets and exhibits favorable predictive performance for PEMFC performance degradation. When compared to different models, the DA-LSTM consistently outperforms other models, demonstrating superior stability and predictive capability. Additionally, the visualization of attention weights explains the relationship between input features and the performance degradation of PEMFC. This enables real-time monitoring of fuel cell systems, which in turn helps prolong the lifespan of PEMFC.
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Liu, Yang
Xiao, Biao
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Xiao, Biao
Zhao, Junjie
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Zhao, Junjie
Fan, Lixin
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Fan, Lixin
Luo, Xiaobing
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Luo, Xiaobing
Tu, Zhengkai
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Tu, Zhengkai
Chan, Siew Hwa
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Energy Res Inst, 50 Nanyang Ave, Singapore 637553, SingaporeHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Xiao, Biao
Zhao, Junjie
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Zhao, Junjie
Fan, Lixin
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Fan, Lixin
Liu, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Liu, Yang
Chan, Siew Hwa
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Energy Res Inst, 50 Nanyang Ave, Singapore 637553, SingaporeHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
Chan, Siew Hwa
Tu, Zhengkai
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
机构:
Fuzhou Univ, Coll Elect Engn & Automat, Key Lab New Energy Generat & Power Convers, Fuzhou 350116, Peoples R China
Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong 999077, Peoples R ChinaFuzhou Univ, Coll Elect Engn & Automat, Key Lab New Energy Generat & Power Convers, Fuzhou 350116, Peoples R China
Chen, Qifan
Lin, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Coll Elect Engn & Automat, Fujian Key Lab New Energy Generat & Power Convers, Fuzhou 350116, Peoples R ChinaFuzhou Univ, Coll Elect Engn & Automat, Key Lab New Energy Generat & Power Convers, Fuzhou 350116, Peoples R China
Lin, Nan
Bu, Siqi
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Elect Engn, Kowloon, Hong Kong 999077, Peoples R ChinaFuzhou Univ, Coll Elect Engn & Automat, Key Lab New Energy Generat & Power Convers, Fuzhou 350116, Peoples R China
Bu, Siqi
Wang, Huaiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Coll Elect Engn & Automat, Fujian Key Lab New Energy Generat & Power Convers, Fuzhou 350116, Peoples R ChinaFuzhou Univ, Coll Elect Engn & Automat, Key Lab New Energy Generat & Power Convers, Fuzhou 350116, Peoples R China
Wang, Huaiyuan
Zhang, Baohui
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Coll Elect Engn, Xian 710045, Peoples R ChinaFuzhou Univ, Coll Elect Engn & Automat, Key Lab New Energy Generat & Power Convers, Fuzhou 350116, Peoples R China