Time Series Anomaly Detection with Reconstruction-Based State-Space Models

被引:1
|
作者
Wang, Fan [1 ]
Wang, Keli [2 ,3 ]
Yao, Boyu [1 ]
机构
[1] Novo Nordisk AS, Beijing, Peoples R China
[2] China Acad Railway Sci, Postgrad Dept, Beijing, Peoples R China
[3] China Railway Test & Certificat Ctr Ltd, Beijing, Peoples R China
关键词
Time series; Neural networks; Anomaly detection; State-space models;
D O I
10.1007/978-3-031-44213-1_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in digitization have led to the availability of multivariate time series data in various domains, enabling real-time monitoring of operations. Identifying abnormal data patterns and detecting potential failures in these scenarios are important yet rather challenging. In this work, we propose a novel anomaly detection method for time series data. The proposed framework jointly learns the observation model and the dynamic model, and model uncertainty is estimated from normal samples. Specifically, a long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the state space. Bidirectional transitions of states are simultaneously modeled by leveraging backward and forward temporal information. Regularization of the state space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level. Empirical studies on synthetic and real-world datasets demonstrate the superior performance of the proposedmethod in anomaly detection tasks.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 50 条
  • [21] Fast estimation methods for time-series models in state-space form
    Garcia-Hiernaux, Alfredo
    Casals, Jose
    Jerez, Miguel
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (02) : 121 - 134
  • [22] Long-term prediction of time series using state-space models
    Liitiainen, Elia
    Lendasse, Amaury
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 181 - 190
  • [23] Making Reconstruction-based Method Great Again for Video Anomaly Detection
    Wang, Yizhou
    Qin, Can
    Bai, Yue
    Xu, Yi
    Ma, Xu
    Fu, Yun
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 1215 - 1220
  • [24] Anomaly detection of process unit based on LSTM time series reconstruction
    Dou S.
    Zhang G.
    Xiong Z.
    Huagong Xuebao/CIESC Journal, 2019, 70 (02): : 481 - 486
  • [25] A guide to state-space modeling of ecological time series
    Auger-Methe, Marie
    Newman, Ken
    Cole, Diana
    Empacher, Fanny
    Gryba, Rowenna
    King, Aaron A.
    Leos-Barajas, Vianey
    Mills Flemming, Joanna
    Nielsen, Anders
    Petris, Giovanni
    Thomas, Len
    ECOLOGICAL MONOGRAPHS, 2021, 91 (04)
  • [26] On the Performance of Legendre State-Space Models in Short-Term Time Series Forecasting
    Zhang, Elise
    Wu, Di
    Boulet, Benoit
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,
  • [27] Financial Time Series Volatility Analysis Using Gaussian Process State-Space Models
    Han, Jianan
    Zhang, Xiao-Ping
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 358 - 362
  • [28] MARSS: Multivariate Autoregressive State-space Models for Analyzing Time-series Data
    Holmes, Elizabeth E.
    Ward, Eric J.
    Wills, Kellie
    R JOURNAL, 2012, 4 (01): : 11 - 19
  • [29] State-space prediction model for chaotic time series
    Alparslan, AK
    Sayar, M
    Atilgan, AR
    PHYSICAL REVIEW E, 1998, 58 (02) : 2640 - 2643
  • [30] A Novel Criterion of Reconstruction-based Anomaly Detection for Sparse-binary Data
    Qiao, Heng
    Oliveira, Daniela
    Wu, Dapeng
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,