Detection of Cardio Vascular abnormalities using gradient descent optimization and CNN

被引:2
|
作者
Singh, Ninni [1 ]
Gunjan, Vinit Kumar [1 ]
Shaik, Fahimuddin [2 ]
Roy, Sudipta [3 ]
机构
[1] CMR Inst Technol Hyderabad, Dept Comp Sci & Engn, Hyderabad, Telangana, India
[2] Annamacharya Inst Technol & Sci, Dept Elect & Commun Engn, Rajampet 516126, Andhra Pradesh, India
[3] Jio Inst, Dept Artificial Intelligence & Data Sci, Navi Mumbai 410206, India
关键词
Cardio vascular; ECG; Fusion; CNN; Gradient descent; CLASSIFICATION;
D O I
10.1007/s12553-023-00807-6
中图分类号
R-058 [];
学科分类号
摘要
PurposeThe purpose of this study is to propose an advanced methodology for automated diagnosis and classification of heart conditions using electrocardiography (ECG) in order to address the rising death rate from cardiovascular disease (CVD).MethodsBuffered ECG pulses from the MIT-BIH Arrhythmia dataset are integrated using a multi-modal fusion framework, refined using Gradient Descent optimization, and classified using the K-Means technique based on pulse magnitudes. Convolutional Neural Networks (CNNs) are used to detect anomalies.ResultsThe study achieves an average accuracy of 98%, outperforming current state-of-the-art methods. Sensitivity, specificity, and other metrics show significant improvements. The results also show the type of Cardiovascular disease detected using Confusion matrix plots.ConclusionThe proposed methodology demonstrates the utility of advanced machine learning, particularly deep learning, in the assessment of cardiovascular health. Based on the MIT-BIH Arrhythmia dataset, this study contributes to the development of accurate and efficient diagnostic tools for addressing urgent cardiac health challenges.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 50 条
  • [21] Stochastic gradient descent for wind farm optimization
    Quick, Julian
    Rethore, Pierre-Elouan
    Pedersen, Mads Molgaard
    Rodrigues, Rafael Valotta
    Friis-Moller, Mikkel
    WIND ENERGY SCIENCE, 2023, 8 (08) : 1235 - 1250
  • [22] Stochastic Chebyshev Gradient Descent for Spectral Optimization
    Han, Insu
    Avron, Haim
    Shin, Jinwoo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [23] A Descent Conjugate Gradient Method for Optimization Problems
    Semiu, Ayinde
    Idowu, Osinuga
    Adesina, Adio
    Sunday, Agboola
    Joseph, Adelodun
    Uchenna, Uka
    Olufisayo, Awe
    IAENG International Journal of Applied Mathematics, 2024, 54 (09) : 1765 - 1775
  • [24] Ant colony optimization and stochastic gradient descent
    Meuleau, N
    Dorigo, M
    ARTIFICIAL LIFE, 2002, 8 (02) : 103 - 121
  • [25] NOMA Codebook Optimization by Batch Gradient Descent
    Si, Zhongwei
    Wen, Shaoguo
    Dong, Bing
    IEEE ACCESS, 2019, 7 : 117274 - 117281
  • [26] Stochastic gradient descent for optimization for nuclear systems
    Williams, Austin
    Walton, Noah
    Maryanski, Austin
    Bogetic, Sandra
    Hines, Wes
    Sobes, Vladimir
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [27] Distributed Optimization with Gradient Descent and Quantized Communication
    Rikos, Apostolos I.
    Jiang, Wei
    Charalambous, Themistoklis
    Johansson, Karl H.
    IFAC PAPERSONLINE, 2023, 56 (02): : 5900 - 5906
  • [28] Self-tuning control of electrical machines using gradient descent optimization
    Liu, Ziqian
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2007, 28 (02): : 77 - 93
  • [29] Gradient Descent Shape Optimization of Microwave Circuits using Bezier Curves Parametrization
    Dia, Ali
    Durousseau, Christophe
    Menudier, Cyrille
    Carpentier, Ludovic
    Ruatta, Olivier
    Bila, Stephane
    2018 48TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2018, : 158 - 161
  • [30] A novel range prediction model using gradient descent optimization and regression techniques
    Kumar V.
    Krishna P.R.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (10) : 14277 - 14289