Multi-Scale Spatial-Spectral Attention-Based Neural Architecture Search for Hyperspectral Image Classification

被引:2
|
作者
Song, Yingluo [1 ]
Wang, Aili [1 ]
Zhao, Yan [2 ]
Wu, Haibin [1 ]
Iwahori, Yuji [3 ]
机构
[1] Harbin Univ Sci & Technol, Heilongjiang Prov Key Lab Laser Spect Technol & Ap, Harbin 150080, Peoples R China
[2] Informat & Commun Co, State Grid Heilongjiang Elect Power Co Ltd, Commun Construct Operat & Maintenance Ctr, Harbin 150010, Peoples R China
[3] Chubu Univ, Dept Comp Sci, Kasugai Shi, Aichi 4878501, Japan
关键词
hyperspectral image (HSI) classification; neural architecture search; differentiable architecture search (DARTS); multi-scale attention mechanism; NETWORKS;
D O I
10.3390/electronics12173641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional neural networks (CNNs) are indeed commonly employed for hyperspectral image classification. However, the architecture of cellular neural networks typically requires manual design and fine-tuning, which can be quite laborious. Fortunately, there have been recent advancements in the field of Neural Architecture Search (NAS) that enable the automatic design of networks. These NAS techniques have significantly improved the accuracy of HSI classification, pushing it to new levels. This article proposes a Multi-Scale Spatial-Spectral Attention-based NAS, MS3ANAS) framework for HSI classification to automatically design a neural network structure for HSI classifiers. First, this paper constructs a multi-scale attention mechanism extended search space, which considers multi-scale filters to reduce parameters while maintaining large-scale receptive field and enhanced multi-scale spectral-spatial feature extraction to increase network sensitivity towards hyperspectral information. Then, we combined the slow-fast learning architecture update paradigm to optimize and iteratively update the architecture vector and effectively improve the model's generalization ability. Finally, we introduced the Lion optimizer to track only momentum and use symbol operations to calculate updates, thereby reducing memory overhead and effectively reducing training time. The proposed NAS method demonstrates impressive classification performance and effectively improves accuracy across three HSI datasets (University of Pavia, Xuzhou, and WHU-Hi-Hanchuan).
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Spatial Proximity Feature Selection With Residual Spatial-Spectral Attention Network for Hyperspectral Image Classification
    Zhang, Xinsheng
    Wang, Zhaohui
    IEEE ACCESS, 2023, 11 : 23268 - 23281
  • [42] A new hyperspectral image classification method based on spatial-spectral features
    Qu Shenming
    Li Xiang
    Gan Zhihua
    Scientific Reports, 12
  • [43] Hyperspectral image classification based on hierarchical spatial-spectral fusion network
    Ouyang N.
    Li Z.-F.
    Lin L.-P.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (10): : 2438 - 2446
  • [44] Spatial-spectral morphological mamba for hyperspectral image classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Khan, Adil Mehmood
    Mazzara, Manuel
    Distefano, Salvatore
    Usama, Muhammad
    Roy, Swalpa Kumar
    Chanussot, Jocelyn
    Hong, Danfeng
    NEUROCOMPUTING, 2025, 636
  • [45] Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification
    Fang, Jie
    Zhu, Zhijie
    He, Guanghua
    Wang, Nan
    Cao, Xiaoqian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [46] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [47] MambaHSI: Spatial-Spectral Mamba for Hyperspectral Image Classification
    Li, Yapeng
    Luo, Yong
    Zhang, Lefei
    Wang, Zengmao
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [48] SPATIAL-SPECTRAL CLASSIFICATION BASED ON GROUP SPARSE CODING FOR HYPERSPECTRAL IMAGE
    Zhang, Xiangrong
    Weng, Peng
    Feng, Jie
    Zhang, Erlei
    Hou, Biao
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1745 - 1748
  • [49] Spatial-spectral hyperspectral image classification based on information measurement and CNN
    Lin, Lianlei
    Chen, Cailu
    Xu, Tiejun
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2020, 2020 (01)
  • [50] Spatial-spectral hyperspectral image classification based on information measurement and CNN
    Lianlei Lin
    Cailu Chen
    Tiejun Xu
    EURASIP Journal on Wireless Communications and Networking, 2020