A survey on compressed sensing approach to systems and control

被引:0
|
作者
Nagahara, Masaaki [1 ]
Yamamoto, Yutaka [2 ]
机构
[1] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398521, Japan
[2] Kyoto Univ, Grad Sch Informat, Yoshida Honmachi Sakyo-ku, Kyoto 6068501, Japan
关键词
Compressed sensing; Convex optimization; Sparse control; Reduced-order control; Maximum hands-off control; HANDS-OFF CONTROL; ACTUATOR PLACEMENT; PREDICTIVE CONTROL; BAND; LMI;
D O I
10.1007/s00498-023-00366-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this survey paper, we review recent advances of compressed sensing applied to systems and control. Compressed sensing has been actively researched in the field of signal processing and machine learning. More recently, the method has been applied to systems and control problems, such as sparse feedback gain design, reduced-order control, and maximum hands-off control. This paper introduces these important applications of compressed sensing to systems and control. MATLAB programs for the numerical examples shown in this survey paper are available as supplementary materials.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] Alternative Optimization of Sensing Matrix and Sparsifying Dictionary for Compressed Sensing Systems
    Jiang, Qianru
    Bai, Huang
    Li, Dan
    Huang, Xincai
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 510 - 515
  • [42] Application of Compressed Sensing on Magnetic Resonance Imaging: A brief Survey
    Shrividya, G.
    Bharathi, S. H.
    2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 2037 - 2041
  • [43] Resource Redistribution in Internet of Things applications by Compressed Sensing: a Survey
    Marchioni, Alex
    Pimentel-Romero, Cesar H.
    Pareschi, Fabio
    Mangia, Mauro
    Rovatti, Riccardo
    Setti, Gianluca
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [44] A survey on one-bit compressed sensing: theory and applications
    Zhilin Li
    Wenbo Xu
    Xiaobo Zhang
    Jiaru Lin
    Frontiers of Computer Science, 2018, 12 : 217 - 230
  • [45] A survey on one-bit compressed sensing: theory and applications
    Li, Zhilin
    Xu, Wenbo
    Zhang, Xiaobo
    Lin, Jiaru
    FRONTIERS OF COMPUTER SCIENCE, 2018, 12 (02) : 217 - 230
  • [46] Rakeness-based approach to Compressed Sensing of ECGs
    Mangia, Mauro
    Haboba, Javier
    Rovatti, Riccardo
    Setti, Gianluca
    2011 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2011, : 424 - 427
  • [47] A Committee Machine Approach for Compressed Sensing Signal Reconstruction
    Ambat, Sooraj K.
    Chatterjee, Saikat
    Hari, K. V. S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (07) : 1705 - 1717
  • [48] A new approach to radionuclide imaging using compressed sensing
    Hanif, A.
    Mansoor, A. B.
    Ejaz, T.
    IMAGING SCIENCE JOURNAL, 2013, 61 (06): : 503 - 508
  • [49] A Compressed Sensing Approach for MR Tissue Contrast Synthesis
    Roy, Snehashis
    Carass, Aaron
    Prince, Jerry
    INFORMATION PROCESSING IN MEDICAL IMAGING, 2011, 6801 : 371 - 383
  • [50] A Compressed Sensing Approach to Block-Iterative Equalizers
    da Cunha Pereira Pinto, Rafael G.
    Merched, Ricardo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (04) : 1007 - 1022