BAYESIAN INVERSION TECHNIQUES FOR STOCHASTIC

被引:0
|
作者
Pasiouras, Alexandros M. [1 ]
Burnetas, Apostolos N. [1 ]
Yannacopoulos, Athanasios N. [2 ,3 ]
机构
[1] Natl & Kapodistrian Univ Athens NKUA, Dept Math, Athens, Greece
[2] Athens Univ Econ & Business AUEB, Dept Stat, Athens, Greece
[3] Athens Univ Econ & Business AUEB, Stochast Modelling & Applicat Lab, Athens, Greece
关键词
Inverse problems; initial condition recovery; Bayesian regularization; Gaussian noise; TIKHONOV-REGULARIZATION; TERM STRUCTURE; REGRESSION; MODELS;
D O I
10.3934/jimo.2023051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
. We consider the problem of recovering the initial condition for a class of stochastic partial differential equations under Gaussian additive noise. We assume that the covariance operator of the noise is unknown. We develop an adapted Bayesian regularisation strategy, which incorporates the estimation of the unknown parameters into the computation of the initial condition posterior distribution. The proposed method allows estimation of the initial condition curve as well as construction of forecasts of the entire state curve, although the observed data may include only partial observations of the system state. We prove that, under certain conditions, the posterior distribution converges to that under known parameter values when the sample size is large. We also compare the performance of the proposed method to that of Tikhonov regularization on simulated data.
引用
收藏
页码:8558 / 8589
页数:32
相关论文
共 50 条
  • [41] Stochastic inversion in hydrogeology - Preface
    Capilla, JE
    JOURNAL OF HYDROLOGY, 2003, 281 (04) : 249 - 250
  • [42] Stochastic inversion in ionospheric radiotomography
    Nygren, T
    Markkanen, M
    Lehtinen, M
    Tereshchenko, ED
    Khudukon, BZ
    RADIO SCIENCE, 1997, 32 (06) : 2359 - 2372
  • [43] Stochastic conjugate gradient inversion
    Zhu, Peimin
    Wang, Jiaying
    Zhan, Zhengbin
    Gu, Hanming
    Zhu, Guangming
    2000, Sci Publ House (35):
  • [44] Multidataset study of optimal parameter and uncertainty estimation of a land surface model with Bayesian stochastic inversion and multicriteria method
    Xia, YL
    Sen, MK
    Jackson, CS
    Stoffa, PL
    JOURNAL OF APPLIED METEOROLOGY, 2004, 43 (10): : 1477 - 1497
  • [45] Bayesian inversion for optical diffraction tomography
    Ayasso, H.
    Duchene, B.
    Mohammad-Djafari, A.
    JOURNAL OF MODERN OPTICS, 2010, 57 (09) : 765 - 776
  • [46] A BAYESIAN-APPROACH TO NONLINEAR INVERSION
    JACKSON, DD
    MATSUURA, M
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1985, 90 (NB1): : 581 - 591
  • [47] Generalized priors in Bayesian inversion problems
    Kitanidis, Peter K.
    ADVANCES IN WATER RESOURCES, 2012, 36 : 3 - 10
  • [48] Ultrafast current imaging by Bayesian inversion
    Somnath, S.
    Law, K. J. H.
    Morozovska, A. N.
    Maksymovych, P.
    Kim, Y.
    Lu, X.
    Alexe, M.
    Archibald, R.
    Kalinin, S. V.
    Jesse, S.
    Vasudevan, R. K.
    NATURE COMMUNICATIONS, 2018, 9
  • [49] Bayesian inversion of CSEM and magnetotelluric data
    Buland, Arild
    Kolbjornsen, Odd
    GEOPHYSICS, 2012, 77 (01) : E33 - E42
  • [50] Bayesian inference in satellite gravity inversion
    Kis K.I.
    Taylor P.T.
    Wittmann G.
    Kim H.R.
    Toronyi B.
    Mayer-Gürr T.
    Acta Geodaetica et Geophysica Hungarica, 2005, 40 (2): : 161 - 170