BAYESIAN INVERSION TECHNIQUES FOR STOCHASTIC

被引:0
|
作者
Pasiouras, Alexandros M. [1 ]
Burnetas, Apostolos N. [1 ]
Yannacopoulos, Athanasios N. [2 ,3 ]
机构
[1] Natl & Kapodistrian Univ Athens NKUA, Dept Math, Athens, Greece
[2] Athens Univ Econ & Business AUEB, Dept Stat, Athens, Greece
[3] Athens Univ Econ & Business AUEB, Stochast Modelling & Applicat Lab, Athens, Greece
关键词
Inverse problems; initial condition recovery; Bayesian regularization; Gaussian noise; TIKHONOV-REGULARIZATION; TERM STRUCTURE; REGRESSION; MODELS;
D O I
10.3934/jimo.2023051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
. We consider the problem of recovering the initial condition for a class of stochastic partial differential equations under Gaussian additive noise. We assume that the covariance operator of the noise is unknown. We develop an adapted Bayesian regularisation strategy, which incorporates the estimation of the unknown parameters into the computation of the initial condition posterior distribution. The proposed method allows estimation of the initial condition curve as well as construction of forecasts of the entire state curve, although the observed data may include only partial observations of the system state. We prove that, under certain conditions, the posterior distribution converges to that under known parameter values when the sample size is large. We also compare the performance of the proposed method to that of Tikhonov regularization on simulated data.
引用
收藏
页码:8558 / 8589
页数:32
相关论文
共 50 条
  • [1] Bayesian geoacoustic inversion for the inversion techniques 2001 workshop
    Lapinski, ALS
    Dosso, SE
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2003, 28 (03) : 380 - 393
  • [2] Bayesian stochastic inversion constrained by seismic data
    Zhang, F. (zhangfch@upc.edu.cn), 1600, Science Press (49):
  • [3] Nonstationary Prestack Linear Bayesian Stochastic Inversion
    Gao, Bangbang
    Zhou, Hui
    Wang, Lingqian
    Cao, Yamei
    Yu, Bo
    Xia, Tong
    Wei, Zhefeng
    Zhang, Hongliang
    Sun, Wenbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [4] Bayesian model inversion using stochastic spectral embedding
    Wagner, Paul-Remo
    Marelli, Stefano
    Sudret, Bruno
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
  • [5] High-resolution Bayesian sequential stochastic inversion
    Li Q.
    Luo Y.
    Zhang S.
    Zhang L.
    Yang Y.
    Huang H.
    Li, Qixin (liqx13@cnooc.com.cn), 1600, Science Press (55): : 389 - 397
  • [6] Stochastic Bayesian inversion of borehole self-potential measurements
    Woodruff, W. F.
    Revil, A.
    Jardani, A.
    Nummedal, D.
    Cumella, S.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 183 (02) : 748 - 764
  • [7] Study of TEC fluctuation via stochastic models and Bayesian inversion
    Bires, A.
    Roininen, L.
    Damtie, B.
    Nigussie, M.
    Vanhamaki, H.
    RADIO SCIENCE, 2016, 51 (11) : 1772 - 1782
  • [8] Hybrid Global Stochastic and Bayesian Linearized Acoustic Seismic Inversion Methodology
    Bordignon, Fernando Luis
    de Figueiredo, Leandro Passos
    Azevedo, Leonardo
    Soares, Amilcar
    Roisenberg, Mauro
    Neto, Guenther Schwedersky
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (08): : 4457 - 4464
  • [9] METHOD OF STOCHASTIC OPTIMAL-CONTROL BY BAYESIAN FILTERING TECHNIQUES
    LAZARIDIS, A
    BASU, DR
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1986, 17 (01) : 81 - 95
  • [10] Anisotropic Bayesian linearized stochastic seismic inversion with multi-parameter decoupling
    Yu, Bo
    Shi, Ying
    Tian, Yukun
    Zhou, Hui
    Yu, Zhanqing
    Zhang, Yuanpeng
    Wang, Weihong
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2024, 21 (03) : 961 - 980