Insights into the Oxidative Degradation Mechanism of Solid Amine Sorbents for CO2 Capture from Air: Roles of Atmospheric Water

被引:51
|
作者
Carneiro, Juliana S. A. [1 ]
Innocenti, Giada [1 ]
Moon, Hyun June [1 ]
Guta, Yoseph [1 ]
Proano, Laura [1 ]
Sievers, Carsten [1 ]
Sakwa-Novak, Miles A. [2 ]
Ping, Eric W. [2 ]
Jones, Christopher W. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Global Thermostat LLC, 10275 E106th Ave, Brighton, CO 80601 USA
基金
美国国家科学基金会;
关键词
Amines; CO2; Adsorption; Direct Air Capture; Oxidative Degradation; Solid Sorbents; MESOPOROUS SILICA; SUPPORTED POLYETHYLENIMINE; ADSORPTION PERFORMANCE; STRUCTURAL-CHANGES; HYBRID ADSORBENTS; HYDROGEN-PEROXIDE; POLY(ETHYLENIMINE); STABILITY; KINETICS; MONOETHANOLAMINE;
D O I
10.1002/anie.202302887
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Direct air capture (DAC) processes for extraction of CO2 from ambient air are unique among chemical processes in that they operate outdoors with minimal feed pretreatments. Here, the impact of humidity on the oxidative degradation of a prototypical solid supported amine sorbent, poly(ethylenimine) (PEI) supported on Al2O3, is explored in detail. By combining CO2 adsorption measurements, oxidative degradation rates, elemental analyses, solid-state NMR and in situ IR spectroscopic analysis in conjunction with O-18 labeling of water, a comprehensive picture of sorbent oxidation is achieved under accelerated conditions. We demonstrated that the presence of water vapor can play an important role in accelerating the degradation reactions. From the study we inferred the identity and kinetics of formation of the major oxidative products, and the role(s) of humidity. Our data are consistent with a radical mediated autooxidative degradation mechanism.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A study on the effect of the amine structure in CO2 dry sorbents on CO2 capture
    Park, Jong Hyun
    Celedonio, Jhulimar M.
    Seo, Hwimin
    Park, Yong Ki
    Ko, Young Soo
    CATALYSIS TODAY, 2016, 265 : 68 - 76
  • [32] Advanced solid sorbents for CO2 capture from flue gas
    Wang, Xiaoxing
    Wang, Dongxiang
    Song, Chunshan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [33] Theoretical screening of solid sorbents for CO2 capture
    Duan, Yuhua
    Sorescu, Dan C.
    Luebke, David
    Morreale, Bryan
    Li, Bingyun
    Zhang, Bo
    Johnson, Karl
    Zhang, Keling
    Li, Xiaohong S.
    King, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [34] Amine-impregnated Alumina Solid Sorbents for CO2 capture. Lessons learned
    Lara, Yolanda
    Romeo, Luis M.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2372 - 2379
  • [35] Novel solid sorbents for CO2 capture.
    Soong, Y
    Champagne, KJ
    Gray, ML
    Stevens, RW
    Toochinda, P
    Chuang, SSC
    Siriwardane, RV
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U508 - U508
  • [36] CO2 capture utilizing solid sorbents.
    Siriwardane, RV
    Shen, M
    Fisher, E
    Poston, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U577 - U577
  • [37] Mechanistic insights into the oxidative degradation of amine-containing CO2 adsorbents
    Abidli, Imen
    Tangour, Bahoueddine
    Sayari, Abdelhamid
    ENVIRONMENTAL RESEARCH, 2025, 275
  • [38] Role of residual H2O on the adsorption mechanism and kinetics of solid amine-functionalized sorbents for CO2 capture
    Hahn, Maximilian
    Steib, Matthias
    Berger, Edith
    Jentys, Andreas
    Lercher, Johannes
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [39] Amine-based CO2 capture sorbents: A potential CO2 hydrogenation catalyst
    Srivatsa, Srikanth Chakravartula
    Bhattacharya, Sankar
    JOURNAL OF CO2 UTILIZATION, 2018, 26 : 397 - 407
  • [40] Amine-based sorbents for CO2 capture from air and flue gas-a short review and perspective
    Huhe, F. N. U.
    King, Jaelynne
    Chuang, Steven S. C.
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (03) : 791 - 817