Performance evaluation of selected machine learning techniques in the detection of non-technical losses in the distribution system

被引:0
|
作者
Teffo, Nthabiseng [1 ]
Bokoro, Pitshou [1 ]
Muremi, Lutendo [1 ]
Paepae, Thulane [2 ]
机构
[1] Univ Johannesburg, Dept Elect & Elect Engn, Johannesburg, South Africa
[2] Univ Johannesburg, Dept Math & Appl Math, Johannesburg, South Africa
关键词
electricity theft; stratified cross-validation; data leakage; imbalanced class distribution;
D O I
10.1109/SAUPEC60914.2024.10445037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electricity is an essential source in acquiring industrial and economic development in South Africa. Power distribution systems face daily challenges in tracing and estimating technical and non-technical losses. Non-technical losses (NTLs) like energy theft, poor meter readings and inadequate payments lead to anomalous spending and patterns. This work uses the buying data to assess the efficacy of Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Logistic Regression, Artificial Neural Networks, and K-Nearest Neighbors in predicting NTLs using a South African dataset. Comparatively, all the tree-based models (DT, RF, and XGBoost) achieved perfect scores across all evaluation metrics in classifying honest and dishonest customers.
引用
收藏
页码:287 / 291
页数:5
相关论文
共 50 条
  • [31] Clustering-based novelty detection for identification of non-technical losses
    Viegas, Joaquim L.
    Esteves, Paulo R.
    Vieira, Susana M.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2018, 101 : 301 - 310
  • [32] Machine Learning Online Education Experience for Non-technical People
    Yang, Xiaochun
    Liang, Jiawei
    SIGCSE'18: PROCEEDINGS OF THE 49TH ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, 2018, : 1075 - 1076
  • [33] Evaluation and effective management of non-technical losses in electrical power networks
    Davidson, IE
    2002 IEEE AFRICON, VOLS 1 AND 2: ELECTROTECHNOLOGICAL SERVICES FOR AFRICA, 2002, : 473 - 477
  • [34] Stacked machine learning models for non-technical loss detection in smart grid: A comparative analysis
    Hashim, Muhammad
    Khan, Laiq
    Javaid, Nadeem
    Ullah, Zahid
    Javed, Aymin
    ENERGY REPORTS, 2024, 12 : 1235 - 1253
  • [35] Technical and non-technical losses calculation in distribution grids using a defined equivalent operational impedance
    Manito, Allan R. A.
    Bezerra, Ubiratan H.
    Soares, Thiago M.
    Vieira, Joao P. A.
    Nunes, Marcus V. A.
    Tostes, Maria E. L.
    de Oliveira, Rafael C.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2019, 13 (08) : 1315 - 1323
  • [36] Explainable Artificial Intelligence for Prediction of Non-Technical Losses in Electricity Distribution Networks
    Nwafor, Obumneme
    Okafor, Emmanuel
    Aboushady, Ahmed A.
    Nwafor, Chioma
    Zhou, Chengke
    IEEE ACCESS, 2023, 11 : 73104 - 73115
  • [37] Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
    Mahmood, Raja Azlina Raja
    Abdi, AmirHossien
    Hussin, Masnida
    BAGHDAD SCIENCE JOURNAL, 2021, 18 (02) : 884 - 898
  • [38] A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection
    Fernandes, Silas E. N.
    Pereira, Danillo R.
    Ramos, Caio C. O.
    Souza, Andre N.
    Gastaldello, Danilo S.
    Papa, Joao P.
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (03) : 3226 - 3235
  • [39] Detection of Non-Technical Losses in Power Utilities-A Comprehensive Systematic Review
    Saeed, Muhammad Salman
    Mustafa, Mohd Wazir
    Hamadneh, Nawaf N.
    Alshammari, Nawa A.
    Sheikh, Usman Ullah
    Jumani, Touqeer Ahmed
    Khalid, Saifulnizam Bin Abd
    Khan, Ilyas
    ENERGIES, 2020, 13 (18)
  • [40] Non-technical losses detection with Gramian angular field and deep residual network
    Chen, Yuhui
    Li, Jian
    Huang, Qi
    Li, Ke
    Zhao, Zixu
    Ren, Xibi
    ENERGY REPORTS, 2023, 9 : 1392 - 1401