Improved Cycling Stability of Ni-Rich Cathode Material by In Situ Introduced TM-B-O Amorphous Surface Structure

被引:2
|
作者
Yang, Guangchang [1 ,2 ]
Yang, Shenglong [1 ]
Lai, Feiyan [1 ,2 ]
Tan, Chunlei [3 ]
Qiao, Jia [1 ,2 ]
Wang, Hongqiang [1 ]
Jin, Qianqian [3 ]
Zhang, Xiaohui [1 ,2 ,3 ]
机构
[1] Guangxi Normal Univ, Guangxi New Energy Ship Battery Engn Technol Res C, Guangxi Key Lab Low Carbon Energy Mat, Guangxi Sci & Technol Achievements Transformat Pil, Guilin 541004, Peoples R China
[2] Hezhou Univ, Coll Mat & Chem Engn, Guangxi Key Lab Calcium Carbonate Resources Compre, Hezhou 542899, Peoples R China
[3] Guangxi Univ Sci & Technol, Inst New Bldg Mat & Engn Applicat, Ctr Struct Adv Matter, Sch Civil Engn & Architecture,Sch Elect Engn, Liuzhou 545006, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; Ni-rich layered ternary oxides; surface modification; structural transformation; cyclic stability;
D O I
10.1021/acsami.3c18043
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Current research has found the amorphous/crystal interface has some unexpected electrochemical behaviors. This work designed a surface modification strategy using NaBH4 to induce in situ conversion of the surface structure of Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) into TM-B-O amorphous interface layer. Oxidizing the surface from transition metals (TM) with high valence and reductive BH4- in a weak polar medium of ethanol results in an easy redox reacton. A TM-B-O amorphous structure is formed on NCM811 surface. The action of reactive wetting ensures a complete and uniform structure evolution of the surface crystals. The complete coverage protects the outer crystal and the heterogeneous interface impedance between the modified layer and bulk is reduced. More importantly, this amorphous interface layer through in situ conversion enhances the heterogeneous link at interface and its own structural stability. The modified NCM811 (TB2@NCM) treated with 1 wt % NaBH(4 )shows excellent electrochemical performance, especially cyclic stability. At a high cutoff voltage of 4.5 V, the capacity retention was 72.5% at 1 C after 500 cycles. The electrode achieves 173.7 mAh center dot g(-1) at 10 C. This work creates a modifying strategy with potential application prospect due to simple technology with low-cost raw material under mild operating conditions.
引用
收藏
页码:15505 / 15513
页数:9
相关论文
共 50 条
  • [21] Improving the Structure and Cycling Stability of Ni-Rich Layered Cathodes by Dual Modification of Yttrium Doping and Surface Coating
    Huang, Yan
    Cao, Shuang
    Xie, Xin
    Wu, Chao
    Jamil, Sidra
    Zhao, Qinglan
    Chang, Baobao
    Wang, Ying
    Wang, Xianyou
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (17) : 19483 - 19494
  • [22] A facile in-situ coating strategy for Ni-rich cathode materials with improved electrochemical performance
    Zhang, Xiang
    Hu, Guorong
    Cao, Yanbing
    Peng, Zhongdong
    Wang, Weigang
    Tan, Chaopu
    Wang, Yongzhi
    Du, Ke
    ELECTROCHIMICA ACTA, 2021, 383
  • [23] Enhancing the Surface Stability of Ni-Rich Layered Transition Metal Oxide Cathode Materials
    Hu Jiang-Tao
    Zhang Ji-Guang
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2019, 38 (12) : 2005 - 2008
  • [24] Understanding improved cycling and thermal stability of compositionally graded Ni-rich layered LiNi 0.6 Mn 0.2 Co 0.2 O 2 cathode materials
    Bak, Seong-Min
    Song, Myeongjun
    Shadike, Zulipiya
    Hunt, Adrian
    Waluyo, Iradwikanari
    Sadowski, Jerzy T.
    Yan, Hanfei
    Chu, Yong S.
    Yang, Xiao-Qing
    Huang, Xiaojing
    Shin, Youngho
    NANO ENERGY, 2024, 126
  • [25] Stabilization of crystal and interfacial structure of Ni-rich cathode material by vanadium-doping
    Mei, Chengxiang
    Du, Fanghui
    Wu, Ling
    Fan, Zhongxu
    Hao, Qi
    Xu, Tao
    Guo, Huazhang
    Zheng, Junwei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 617 : 193 - 203
  • [26] Improving Cycling Stability of Ni-Rich Cathode for Lithium-Metal Batteries via Interphases Tunning
    Kim, Hun
    Kim, Jae-Min
    Park, Geon-Tae
    Ahn, Yeon-Ji
    Hwang, Jang-Yeon
    Aurbach, Doron
    Sun, Yang-Kook
    ADVANCED ENERGY MATERIALS, 2024,
  • [27] Re-heating effect of Ni-rich cathode material on structure and electrochemical properties
    Jo, Jae Hyeon
    Jo, Chang-Heum
    Yashiro, Hitoshi
    Kim, Sun-Jae
    Myung, Seung-Taek
    JOURNAL OF POWER SOURCES, 2016, 313 : 1 - 8
  • [28] Enhancing the Surface Stability of Ni-Rich Layered Transition Metal Oxide Cathode Materials
    HU Jiang-Tao
    ZHANG Ji-Guang
    ChineseJournalofStructuralChemistry, 2019, 38 (12) : 2005 - 2008
  • [29] In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte
    Sun, Yan-Yun
    Liu, Sheng
    Hou, Yu-Kun
    Li, Guo-Ran
    Gao, Xue-Ping
    JOURNAL OF POWER SOURCES, 2019, 410 : 115 - 123
  • [30] Effective and Low-Cost In Situ Surface Engineering Strategy to Enhance the Interface Stability of an Ultrahigh Ni-Rich NCMA Cathode
    Song, Yang
    Hu, Yang
    Guo, Fuqiren
    Zhu, Chaoqiong
    Qiu, Lang
    Zhou, Junbo
    Deng, Yuting
    Zheng, Zhuo
    Liu, Yang
    Sun, Yan
    Zhong, Benhe
    Guo, Xiaodong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (46) : 51835 - 51845