On Isochronicity

被引:1
|
作者
Treschev, D. V. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
oscillations; isochronicity; superintegrability;
D O I
10.1134/S008154382304017X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a complete set of explicit necessary and sufficient conditions for the isochronicity of a Hamiltonian system with one degree of freedom. The conditions are presented in terms of the Taylor coefficients of the Hamiltonian function and have the form of an infinite collection of polynomial equations.
引用
收藏
页码:198 / 223
页数:26
相关论文
共 50 条
  • [31] Isochronicity and normal forms of polynomial systems of ODEs
    Han, Maoan
    Romanovski, Valery G.
    JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (10) : 1163 - 1174
  • [32] Isochronicity at Infinity into a Class of Rational Differential System
    Yusen Wu
    Wentao Huang
    Hongshuai Dai
    Qualitative Theory of Dynamical Systems, 2011, 10 : 123 - 138
  • [33] Isochronicity at infinity for a class of polynomial differential system
    Wu Y.
    Huang W.
    Journal of Applied Mathematics and Computing, 2010, 34 (1-2) : 251 - 271
  • [34] Isochronicity conditions for some planar polynomial systems
    Boussaada, Islam
    Chouikha, A. Raouf
    Strelcyn, Jean-Marie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (01): : 89 - 112
  • [35] On the order of strong isochronicity of plane dynamical systems
    Amel'kin, V. V.
    DIFFERENTIAL EQUATIONS, 2007, 43 (10) : 1464 - 1467
  • [36] Isochronicity conditions for a center and a focus in polar coordinates
    Rudenok, A. E.
    DIFFERENTIAL EQUATIONS, 2008, 44 (10) : 1419 - 1432
  • [37] Isochronicity conditions for some planar polynomial systems II
    Bardet, Magali
    Boussaada, Islam
    Chouikha, A. Raouf
    Strelcyn, Jean-Marie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (02): : 230 - 249
  • [38] A Random Dynamical Systems Perspective on Isochronicity for Stochastic Oscillations
    Maximilian Engel
    Christian Kuehn
    Communications in Mathematical Physics, 2021, 386 : 1603 - 1641
  • [39] Recursion Formulas in Determining Isochronicity of a Cubic Reversible System
    Liao, Zhiwu
    Hu, Shaoxiang
    Hou, Xianling
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT IV, 2011, 6785 : 619 - 632
  • [40] THE JACOBI LAST MULTIPLIER AND ISOCHRONICITY OF LIENARD TYPE SYSTEMS
    Guha, Partha
    Choudhury, A. Ghose
    REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (06)