Effect of GO content on microstructure and mechanical properties of Ti6Al4V coating reinforced artificial joint

被引:0
|
作者
Gong, Yuling [1 ]
Cui, Chen [2 ]
Wu, Meiping [2 ,3 ]
He, Rui [2 ]
Jie, Dadong [2 ]
Miao, Xiaojin [2 ,3 ]
机构
[1] Taizhou Univ, Sch Mechatron Engn, Taizhou, Jiangsu, Peoples R China
[2] Jiangnan Univ, Coll Mech Engn, Wuxi, Jiangsu, Peoples R China
[3] Jiangnan Univ, Coll Mech Engn, 1800 Lihu Ave, Wuxi 214122, Jiangsu, Peoples R China
关键词
Artificial joint; graphene oxide; Ti6Al4V; mechanical property; microstructure; COMPOSITE COATINGS; LOAD-BEARING; TITANIUM; ALLOY; RESISTANCE; TRIBOLOGY; EVOLUTION; CORROSION; GROWTH;
D O I
10.1177/09544119231202401
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, we have innovatively proposed a method of in-situ synthesized TiC hard phase to improve the surface mechanical properties of artificial joint materials (Ti6Al4V). In order to explore the optimum graphene oxide (GO) addition, GO/Ti6Al4V composite powders with different proportions (0, 0.5, 1.0, and 1.5 wt.%) were prepared. The homogeneously dispersed GO/Ti6Al4V composite powder was prepared on Ti6Al4V substrate by laser cladding technology. The microstructure, phase composition, and mechanical behavior of GO/Ti6Al4V composite coatings were studied by scanning electron microscope (SEM), optical microscope (OM), energy dispersive spectrometer (EDS), tribometer, hardness tester, and surface profiler. The results showed that the addition of GO could significantly improve the mechanical properties of TC4 substrate. During the preparation of the coating, the grain size of in-situ TiC phase was nanoscale and was distributed between acicular martensite, which played a critical role in enhancing the mechanical properties of the coating. The TiC phase distributed between acicular martensite refine the grain size of alpha' phase and improve the cutting resistance of the coating. Nevertheless, excessive GO decreased the fluidity of the molten pool, and micro holes tended to generate in the coating, which had a negative impact on the mechanical properties of the coating. At the GO content of 0.5 wt.%, the microhardness of the GO/Ti6Al4V coating was 1.325 times that of pure Ti6Al4V. Under the friction environment of simulated body fluid solution, the average friction coefficient was approximately 0.307 and the wear rate decreased to 3.5x10(-7) mm(3)/N . m.
引用
收藏
页码:1306 / 1317
页数:12
相关论文
共 50 条
  • [21] Effect of rotating laser welding on microstructure and mechanical properties of Ti6Al4V alloy butt-welded joint
    Zhao, Chaochao
    Cheng, Jing
    Zhang, Li
    Ouyang, Wentai
    Sheng, Liyuan
    JOURNAL OF MATERIALS SCIENCE, 2025, 60 (10) : 4864 - 4882
  • [22] Microstructure and mechanical properties of Ti6Al4V alloy and sapphire joint brazed with graphene-AgCuTi
    Fan, Zhou
    Zhang, Kun
    Liu, Jian-yi
    Hu, Min
    Yang, Chun-feng
    MATERIALS RESEARCH EXPRESS, 2019, 6 (12)
  • [23] Investigation on the microstructure and mechanical properties of Ti6Al4V titanium alloy electron beam welding joint
    Zhao, Xilong
    Lu, Xinhong
    Wang, Kun
    He, Feng
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2022, 236 (06) : 2957 - 2966
  • [24] A study on the corrosion and mechanical properties of duplex coating Ti6Al4V/TiAlBN
    Yusuf, Y.
    Rosli, Z. M.
    Juoi, J. M.
    Omar, N.
    TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2016, 94 (04): : 222 - 226
  • [25] Corrosion behavior and mechanical properties of duplex coating Ti6Al4V/TiAlBN
    Yusuf, Yusliza
    Rosli, Zulkifli Mohd.
    Juoi, Jariah Mohamad
    Omar, Nooririnah
    PROCEEDINGS OF MALAYSIAN INTERNATIONAL TRIBOLOGY CONFERENCE 2015, 2015, : 271 - 272
  • [26] Effect of Different Heat Treatments on Microstructure and Mechanical Properties of Ti6Al4V Titanium Alloy
    Liu Wanying
    Lin Yuanhua
    Chen Yuhai
    Shi Taihe
    Singh, Ambrish
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (03) : 634 - 639
  • [27] Comparative investigation of microstructure and crystallographic texture effect on Ti6Al4V alloy mechanical properties
    Amirnejad, Mohabbat
    Rajabi, Mohammad
    Jamaati, Roohollah
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 256 (256)
  • [28] Effects of helium implantation on microstructure and mechanical properties of Ti6Al4V alloy
    Chen, Shan-Hua
    Wu, Yong
    Schumacher, G.
    Cailiao Gongcheng/Journal of Materials Engineering, 2010, (05): : 25 - 29
  • [29] Microstructure and mechanical properties of selective laser melted Ti6Al4V alloy
    Losertova, M.
    Kubes, V.
    27TH JOINT SEMINAR DEVELOPMENT OF MATERIALS SCIENCE IN RESEARCH AND EDUCATION, 2017, 266
  • [30] Influence of Cryogenic Treatment on Microstructure and Mechanical Properties of Ti6Al4V Alloy
    Fatih Hayati Çakir
    Osman Nuri Çelik
    Journal of Materials Engineering and Performance, 2020, 29 : 6974 - 6984