共 50 条
Babao Dan alleviates gut immune and microbiota disorders while impacting the TLR4/MyD88/NF-?B pathway to attenuate 5-Fluorouracil-induced intestinal injury
被引:41
|作者:
Huang, Bin
[1
,2
,3
]
Gui, Mengxuan
[2
]
An, Honglin
[3
]
Shen, Jiayu
[3
]
Ye, Feimin
[2
]
Ni, Zhuona
[1
]
Zhan, Hanzhang
[3
]
Che, Li
[4
]
Lai, Zhicheng
[4
]
Zeng, Jiahan
[4
]
Peng, Jun
[1
,2
,3
]
Lin, Jiumao
[1
,2
,3
]
机构:
[1] Fujian Univ Tradit Chinese Med, Acad Integrat Med, 1 Qiuyang Rd, Fuzhou 350122, Fujian, Peoples R China
[2] Fujian Univ Tradit Chinese Med, Fujian Key Lab Integrat Med Geriatr, Fuzhou 350122, Fujian, Peoples R China
[3] Fujian Univ Tradit Chinese Med, Key Lab Integrat Med Fujian Prov Univ, Fuzhou 350122, Fujian, Peoples R China
[4] Xiamen Tradit Chinese Med Co Ltd, Xiamen 361100, Peoples R China
关键词:
Babao Dan;
5-fluorouracil;
Intestinal injury;
Immune response;
Gut microbiota disorder;
TLR4/MyD88/NF-kB pathway;
D O I:
10.1016/j.biopha.2023.115387
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
Adjuvant chemotherapy based on 5-fluorouracil (5-FU), such as FOLFOX, is suggested as a treatment for gastrointestinal cancer. Yet, intestinal damage continues to be a prevalent side effect for which there are no practical prevention measures. We investigated whether Babao Dan (BBD), a Traditional Chinese Medicine, protects against intestinal damage induced by 5-FU by controlling immune response and gut microbiota. 5-FU was injected intraperitoneally to establish the mice model, then 250 mg/kg BBD was gavaged for five days straight. 5-FU led to marked weight loss, diarrhea, fecal blood, and histopathologic intestinal damage. Admin-istration of BBD reduced these symptoms, inhibited proinflammatory cytokine (IL-6, IL-1(i, IFN-& gamma;, TNF-a) secretion, and upregulated the ratio of CD3(+) T cells and the CD4(+)/CD8(+) ratio. According to 16S rRNA sequencing, BBD dramatically repaired the disruption of the gut microbiota caused in a time-dependent way, and increased the Firmicutes/Bacteroidetes (F/B) ratio. Transcriptomic results showed that the mechanism is mainly concentrated on the NF-xB pathway, and we found that BBD reduced the concentration of LPS in the fecal suspension and serum, and inhibited TLR4/MyD88/NF-xB pathway activation. Furthermore, at the genus level on the fifth day, BBD upregulated the abundance of unidentified_Corynebacteriaceae, Aerococcus, Blautia, Jeotga-licoccus, Odoribacter, Roseburia, Rikenella, Intestinimonas, unidentified_Lachnospiraceae, Enterorhabdus, Ruminiclos-tridium, and downregulated the abundance of Bacteroides, Parabacteroides, Parasutterella, Erysipelatoclostridium, which were highly correlated with intestinal injury or the TLR4/MyD88/NF-xB pathway. In conclusion, we established a network involving 5-FU, BBD, the immune response, gut microbiota, and key pathways to explain the pharmacology of oral BBD in preventing 5-FU-induced intestinal injury.
引用
收藏
页数:14
相关论文