Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI

被引:3
|
作者
Doss, D. J. [1 ,2 ,6 ,15 ]
Johnson, G. W. [1 ,2 ,6 ]
Narasimhan, S. [1 ,2 ,6 ,7 ]
Shless, J. S. [2 ,7 ]
Jiang, J. W. [2 ,7 ]
Gonzaez, H. F. J. [1 ,2 ,6 ]
Paulo, D. L. [7 ]
Lucas, A. [11 ]
Davis, K. A. [12 ,13 ,14 ]
Chang, C. [1 ,2 ,3 ,4 ,6 ]
Morgan, V. L. [1 ,2 ,6 ,7 ,8 ,9 ]
Constantinidis, C. [1 ,5 ,10 ]
Dawant, B. M. [2 ,3 ,6 ]
Englot, D. J. [1 ,2 ,3 ,6 ,7 ,9 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37212 USA
[3] Vanderbilt Univ, Dept Elect & Comp Engn, Nashville, TN 37212 USA
[4] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37212 USA
[5] Vanderbilt Univ, Dept Neurosci, Nashville, TN 37212 USA
[6] Vanderbilt Inst Surg & Engn, Nashville, TN USA
[7] Vanderbilt Univ, Med Ctr, Dept Neurol Surg, Nashville, TN 37212 USA
[8] Vanderbilt Univ, Med Ctr, Dept Neurol, Nashville, TN 37212 USA
[9] Vanderbilt Univ, Med Ctr, Dept Radiol Sci, Nashville, TN 37212 USA
[10] Vanderbilt Univ, Med Ctr, Dept Ophthalmol & Visual Sci, Nashville, TN 37212 USA
[11] Univ Penn, Dept Bioengn, Philadelphia, PA USA
[12] Univ Penn, Dept Neurosci, Philadelphia, PA USA
[13] Univ Penn, Ctr Neuroengn & Therapeut, Philadelphia, PA USA
[14] Univ Penn, Dept Neurol, Philadelphia, PA USA
[15] Vanderbilt Univ, 1500 21st Ave South,VAV 4340, Nashville, TN 37212 USA
基金
美国国家卫生研究院;
关键词
SUBSTANTIA INNOMINATA; FOREBRAIN ATROPHY; BRAIN-STIMULATION; ALZHEIMERS; DISEASE; ASSOCIATION; DEMENTIA; SYSTEM; VOLUME; MAPS;
D O I
10.3174/ajnr.A7950
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSE: The nucleus basalis of Meynert is a key subcortical structure that is important in arousal and cognition and has been explored as a deep brain stimulation target but is difficult to study due to its small size, variability among patients, and lack of contrast on 3T MR imaging. Thus, our goal was to establish and evaluate a deep learning network for automatic, accurate, and patient-specific segmentations with 3T MR imaging. MATERIALS AND METHODS: Patient-specific segmentations can be produced manually; however, the nucleus basalis of Meynert is difficult to accurately segment on 3T MR imaging, with 7T being preferred. Thus, paired 3T and 7T MR imaging data sets of 21 healthy subjects were obtained. A test data set of 6 subjects was completely withheld. The nucleus was expertly segmented on 7T, providing accurate labels for the paired 3T MR imaging. An external data set of 14 patients with temporal lobe epilepsy was used to test the model on brains with neurologic disorders. A 3D-Unet convolutional neural network was constructed, and a 5-fold cross-validation was performed. RESULTS: The novel segmentation model demonstrated significantly improved Dice coefficients over the standard probabilistic atlas for both healthy subjects (mean, 0.68 [SD, 0.10] versus 0.45 [SD, 0.11], P =.002, t test) and patients (0.64 [SD, 0.10] versus 0.37 [SD, 0.22], P,.001). Additionally, the model demonstrated significantly decreased centroid distance in patients (1.18 [SD, 0.43] mm, 3.09 [SD, 2.56] mm, P =.007). CONCLUSIONS: We developed the first model, to our knowledge, for automatic and accurate patient-specific segmentation of the nucleus basalis of Meynert. This model may enable further study into the nucleus, impacting new treatments such as deep brain stimulation.
引用
收藏
页码:1020 / 1025
页数:6
相关论文
共 50 条
  • [41] Activation of GSK-3 disrupts cholinergic homoeostasis in nucleus basalis of Meynert and frontal cortex of rats
    Wang, Yue
    Tian, Qing
    Liu, En-Jie
    Zhao, Li
    Song, Jie
    Liu, Xin-An
    Ren, Qing-Guo
    Jiang, Xia
    Zeng, Juan
    Yang, Yu-Tao
    Wang, Jian-Zhi
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2017, 21 (12) : 3515 - 3528
  • [42] A detailed manual segmentation procedure for the hypothalamus for 3T T1-weighted MRI
    Ali, Mohammad
    Suh, Jee Su
    Ramonas, Milita
    Hassel, Stefanie
    Arnott, Stephen R.
    Strother, Stephen C.
    Minuzzi, Luciano
    Sassi, Roberto B.
    Lam, Raymond W.
    Milev, Roumen
    Muller, Daniel J.
    Taylor, Valerie H.
    Kennedy, Sidney H.
    Frey, Benicio N.
    METHODSX, 2022, 9
  • [43] Deep-learning-based segmentation of perivascular spaces on T2-Weighted 3T magnetic resonance images
    Cai, Die
    Pan, Minmin
    Liu, Chenyuan
    He, Wenjie
    Ge, Xinting
    Lin, Jiaying
    Li, Rui
    Liu, Mengting
    Xia, Jun
    FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
  • [44] Deep Brain Stimulation of the Nucleus Basalis of Meynert for Parkinson's Disease Dementia: A 36 Months Follow Up Study
    Cappon, Davide
    Gratwicke, James
    Zrinzo, Ludvic
    Akram, Harith
    Hyam, Jonathan
    Hariz, Marwan
    Limousin, Patricia
    Foltynie, Thomas
    Jahanshahi, Marjan
    MOVEMENT DISORDERS CLINICAL PRACTICE, 2022, 9 (06): : 765 - 774
  • [45] Deep brain stimulation of the nucleus basalis of Meynert modulates hippocampal–frontoparietal networks in patients with advanced Alzheimer’s disease
    Yin Jiang
    Tian-Shuo Yuan
    Ying-Chuan Chen
    Peng Guo
    Teng-Hong Lian
    Yu-Ye Liu
    Wei Liu
    Yu-Tong Bai
    Quan Zhang
    Wei Zhang
    Jian-Guo Zhang
    Translational Neurodegeneration, 11
  • [46] 3T MRI evaluation of the accuracy of atlas-based subthalamic nucleus identification
    Stancanello, Joseph
    Muacevic, Alexander
    Sebastiano, Fabio
    Modugno, Nicola
    Cerveri, Pietro
    Ferrigno, Giancarlo
    Uggeri, Fulvio
    Romanelli, Pantaleo
    MEDICAL PHYSICS, 2008, 35 (07) : 3069 - 3077
  • [47] Harmonizing 1.5T/3T Diffusion Weighted MRI through Development of Deep Learning Stabilized Microarchitecture Estimators
    Nath, Vishwesh
    Remedios, Samuel
    Parvathaneni, Prasanna
    Hansen, Colin B.
    Bayrak, Roza G.
    Bermudez, Camilo
    Blaber, Justin A.
    Schilling, Kurt G.
    Janve, Vaibhav A.
    Gao, Yurui
    Huo, Yuankai
    Lyu, Ilwoo
    Williams, Owen
    Resnick, Susan
    Beason-Held, Lori
    Rogers, Baxter P.
    Stepniewska, Iwona
    Anderson, Adam W.
    Landman, Bennett A.
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [48] Deep gray matter segmentation from 1.5T vs. 3T MRI in normal controls and patients with multiple sclerosis
    Chu, R.
    Hurwitz, S.
    Tauhid, S.
    Bakshi, R.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 : 495 - 495
  • [49] Deep Gray Matter Segmentation from 1.5T vs. 3T MRI in Normal Controls and Patients with Multiple Sclerosis
    Chu, Renxin
    Hurwitz, Shelley
    Tauhid, Shahamat
    Bakshi, Rohit
    NEUROLOGY, 2016, 86
  • [50] MRI Acquisition and Analysis Protocol for In Vivo Intraorbital Optic Nerve Segmentation at 3T
    Yiannakas, Marios C.
    Toosy, Ahmed T.
    Raftopoulos, Rhian E.
    Kapoor, Raj
    Miller, David H.
    Wheeler-Kingshott, Claudia A. M.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (06) : 4235 - 4240