Quantum Renyi-2 entropy power inequalities for bosonic Gaussian operations

被引:0
|
作者
Shin, Woochang [1 ]
Noh, Changsuk [1 ]
Park, Jiyong [2 ]
机构
[1] Kyungpook Natl Univ, Dept Phys, Daegu 41566, South Korea
[2] Hanbat Natl Univ, Sch Basic Sci, Daejeon 34158, South Korea
基金
新加坡国家研究基金会;
关键词
ENTANGLEMENT; INFORMATION;
D O I
10.1364/JOSAB.490264
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive quantum Renyi-2 entropy power inequalities for Gaussian operations of the beam-splitting and squeez-ing type. We first show that known quantum von Neumann entropy power inequalities generalize straightforwardly to quantum Renyi-2 entropy power inequalities for Gaussian states but fail to do so for non-Gaussian states. We then derive quantum Renyi-2 entropy power inequalities that provide lower bounds for the Gaussian operations for any state. The inequality for the squeezing operation is shown to have applications in the generation and detec-tion of quantum entanglement.& COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1999 / 2006
页数:8
相关论文
共 30 条