Multitask Particle Swarm Optimization With Dynamic On-Demand Allocation

被引:14
|
作者
Han, Honggui [1 ,2 ]
Bai, Xing [1 ,2 ]
Hou, Ying [1 ,2 ]
Qiao, Junfei [1 ,2 ]
机构
[1] Beijing Univ Technol, Beijing Artificial Intelligence Inst, Minist Educ, Fac Informat Technol,Engn Res Ctr Digital Communit, Beijing 100022, Peoples R China
[2] Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing 100022, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Index Terms-Complexity; multitask optimization (MTO); resource allocation; EVOLUTIONARY MULTITASKING; ALGORITHM;
D O I
10.1109/TEVC.2022.3187512
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multitask optimization aims to solve multiple optimization problems in parallel utilizing a single population. However, if the computing resources are limited, allocating the same computing resources to different tasks will cause resource waste and make complex tasks difficult to converge to the optimal solution. To address this issue, a multitask particle swarm optimization with a dynamic on-demand allocation strategy (MTPSO-DA) is proposed to dynamically allocate computing resources. First, a task complexity index, based on convergence rate and contribution rate, is designed to evaluate the difficulty of solving different tasks. Then, the complexity of different tasks can be evaluated in real time. Second, the skill factor of the particle is extended to a time-varying matrix according to the task complexity index. Then, the recently captured feedback is stored to determine the computational resource demands of the task. Third, an on-demand allocation strategy, based on the time-varying matrix, is developed to obtain the skill factor probability vector utilizing the attenuation accumulation method. Then, computing resources can be allocated dynamically among different tasks. Finally, some comparative experiments are conducted based on the benchmark problem to evaluate the superiority of the MTPSO-DA algorithm. The results indicate that the proposed MTPSO-DA algorithm can achieve dynamic resource allocation.
引用
收藏
页码:1015 / 1026
页数:12
相关论文
共 50 条
  • [31] Chaos particle swarm optimization for resource allocation problem
    Wang, Su
    Meng, Bo
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 464 - 467
  • [32] Optimal Computing Budget Allocation in Particle Swarm Optimization
    Rada-Vilela, Juan
    Zhang, Mengjie
    Johnston, Mark
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 81 - 88
  • [33] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [34] Dynamic multi-swarm global particle swarm optimization
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Zhang, Yinglong
    Gui, Ling
    Li, Xiong
    COMPUTING, 2020, 102 (07) : 1587 - 1626
  • [35] Dynamic multi-swarm global particle swarm optimization
    Xuewen Xia
    Yichao Tang
    Bo Wei
    Yinglong Zhang
    Ling Gui
    Xiong Li
    Computing, 2020, 102 : 1587 - 1626
  • [36] The research on applying particle swarm optimization into human resources allocation optimization
    Jia, Zhengyuan
    Yang, Xuemei
    SIXTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS 1-4: MANAGEMENT CHALLENGES IN A GLOBAL WORLD, 2007, : 2479 - 2483
  • [37] Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization
    Zhang, Si
    Xu, Jie
    Lee, Loo Hay
    Chew, Ek Peng
    Wong, Wai Peng
    Chen, Chun-Hung
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (02) : 206 - 219
  • [38] Unified particle swarm optimization in dynamic environments
    Parsopoulos, KE
    Vrahatis, MN
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2005, 3449 : 590 - 599
  • [39] Dynamic cluster in particle swarm optimization algorithm
    El Dor, Abbas
    Lemoine, David
    Clerc, Maurice
    Siarry, Patrick
    Deroussi, Laurent
    Gourgand, Michel
    NATURAL COMPUTING, 2015, 14 (04) : 655 - 672
  • [40] Compound particle swarm optimization in dynamic environments
    Liu, Lili
    Wang, Dingwei
    Yang, Shengxiang
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 616 - +