Resource-aware multi-task offloading and dependency-aware scheduling for integrated edge-enabled IoV

被引:10
|
作者
Awada, Uchechukwu [1 ]
Zhang, Jiankang [2 ]
Chen, Sheng [3 ,4 ]
Li, Shuangzhi [1 ]
Yang, Shouyi [1 ]
机构
[1] Zhengzhou Univ, Sch Informat Engn, Zhengzhou 450001, Peoples R China
[2] Bournemouth Univ, Dept Comp & Informat, Poole BH12 5BB, England
[3] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, England
[4] Ocean Univ China, Fac Informat Sci & Engn, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Edge computing; IoV; Dependency-aware; Execution time; Resource efficiency; Co-location;
D O I
10.1016/j.sysarc.2023.102923
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Internet of Vehicles (IoV) enables a wealth of modern vehicular applications, such as pedestrian detection, real-time video analytics, etc., that can help to improve traffic efficiency and driving safety. However, these applications impose significant resource demands on the in-vehicle resource-constrained Edge Computing (EC) device installation. In this article, we study the problem of resource-aware offloading of these computation -intensive applications to the Closest roadside units (RSUs) or telecommunication base stations (BSs), where on-site EC devices with larger resource capacities are deployed, and mobility of vehicles are considered at the same time. Specifically, we propose an Integrated EC framework, which can keep edge resources running across various in-vehicles, RSUs and BSs in a single pool, such that these resources can be holistically monitored from a single control plane (CP). Through the CP, individual in-vehicle, RSU or BS edge resource availability can be obtained, hence applications can be offloaded concerning their resource demands. This approach can avoid execution delays due to resource unavailability or insufficient resource availability at any EC deployment. This research further extends the state-of-the-art by providing intelligent multi-task scheduling, by considering both task dependencies and heterogeneous resource demands at the same time. To achieve this, we propose FedEdge, a variant Bin-Packing optimization approach through Gang-Scheduling of multi-dependent tasks that co-schedules and co-locates multi-task tightly on nodes to fully utilize available resources. Extensive experiments on real-world data trace from the recent Alibaba cluster trace, with information on task dependencies and resource demands, show the effectiveness, faster executions, and resource efficiency of our approach compared to the existing approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Dependency-Aware Task Scheduling in TrustZone Empowered Edge Clouds for Makespan Minimization
    Li, Yuepeng
    Zeng, Deze
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (03): : 423 - 434
  • [22] Dependency-Aware Task Offloading Based on Application Hit Ratio
    Zhang, Junna
    Wang, Xinxin
    Yuan, Peiyan
    Dong, Hai
    Zhang, Pengcheng
    Tari, Zahir
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (06) : 3373 - 3386
  • [23] Dependency-Aware Application Assigning and Scheduling in Edge Computing
    Liao, Hanlong
    Li, Xinyi
    Guo, Deke
    Kang, Wenjie
    Li, Jiangfan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (06) : 4451 - 4463
  • [24] Dependency-Aware Resource Allocation for Serverless Functions at the Edge
    Baresi, Luciano
    Quattrocchi, Giovanni
    Ticongolo, Inacio Gaspar
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT I, 2023, 14419 : 347 - 362
  • [25] Task Offloading and Resource Allocation for Edge-Enabled Mobile Learning
    Yang, Ziyan
    Zhong, Shaochun
    CHINA COMMUNICATIONS, 2023, 20 (04) : 326 - 339
  • [26] Dependency-Aware Parallel Offloading and Computation in MEC-Enabled Networks
    Kai, Caihong
    Xiao, Shifeng
    Yi, Yibo
    Peng, Min
    Huang, Wei
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (04) : 853 - 857
  • [27] Dependency-aware task offloading based on deep reinforcement learning in mobile edge computing networks
    Li, Junnan
    Yang, Zhengyi
    Chen, Kai
    Ming, Zhao
    Li, Xiuhua
    Fan, Qilin
    Hao, Jinlong
    Cheng, Luxi
    WIRELESS NETWORKS, 2024, 30 (06) : 5519 - 5531
  • [28] Edge Federation: A Dependency-Aware Multi-Task Dispatching and Co-location in Federated Edge Container-Instances
    Awada, Uchechukwu
    Zhang, Jiankang
    2020 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (EDGE 2020), 2020, : 91 - 98
  • [29] Mobility and dependency-aware task offloading for intelligent assisted driving in vehicular edge computing networks
    Li, Yuan
    Yang, Chao
    Chen, Xin
    Liu, Yi
    VEHICULAR COMMUNICATIONS, 2024, 45
  • [30] Task Offloading and Resource Allocation for Edge-Enabled Mobile Learning
    Ziyan Yang
    Shaochun Zhong
    China Communications, 2023, 20 (04) : 326 - 339