BPAT-UNet: Boundary preserving assembled transformer UNet for ultrasound thyroid nodule segmentation

被引:22
|
作者
Bi, Hui [1 ,2 ,3 ]
Cai, Chengjie [1 ]
Sun, Jiawei [2 ,4 ,5 ]
Jiang, Yibo [6 ]
Lu, Gang [7 ,8 ]
Shu, Huazhong [7 ,8 ]
Ni, Xinye [2 ,4 ,5 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou 213164, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Affiliated Changzhou Peoples Hosp NO 2, Changzhou 213003, Jiangsu, Peoples R China
[3] Southeast Univ, Key Lab Comp Network & Informat Integrat, Nanjing 211096, Jiangsu, Peoples R China
[4] Jiangsu Prov Engn Res Ctr Med Phys, Changzhou 213003, Jiangsu, Peoples R China
[5] Nanjing Med Univ, Ctr Med Phys, Changzhou 213003, Jiangsu, Peoples R China
[6] Changzhou Inst Technol, Changzhou 213032, Jiangsu, Peoples R China
[7] Southeast Univ, Lab Image Sci & Technol, Nanjing 210096, Jiangsu, Peoples R China
[8] Ctr Rech Informat Biomedicale Sino Francais, F-35000 Rennes, France
基金
中国国家自然科学基金;
关键词
Medical ultrasound image segmentation; Thyroid nodules segmentation; Computer-aided diagnosis and treatment; Transformer-based network; BPAT-UNet; SEMANTIC SEGMENTATION; ATTENTION;
D O I
10.1016/j.cmpb.2023.107614
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Accurate and efficient segmentation of thyroid nodules on ultrasound im-ages is critical for computer-aided nodule diagnosis and treatment. For ultrasound images, Convolutional neural networks (CNNs) and Transformers, which are widely used in natural images, cannot obtain sat-isfactory segmentation results, because they either cannot obtain precise boundaries or segment small objects. Methods: To address these issues, we propose a novel Boundary-preserving assembly Trans-former UNet (BPAT-UNet) for ultrasound thyroid nodule segmentation. In the proposed network, a Bound-ary point supervision module (BPSM), which adopts two novel self-attention pooling approaches, is de-signed to enhance boundary features and generate ideal boundary points through a novel method. Mean-while, an Adaptive multi-scale feature fusion module (AMFFM) is constructed to fuse features and chan-nel information at different scales. Finally, to fully integrate the characteristics of high-frequency local and low-frequency global, the Assembled transformer module (ATM) is placed at the bottleneck of the network. The correlation between deformable features and features-among computation is characterized by introducing them into the above two modules of AMFFM and ATM. As the design goal and even-tually demonstrated, BPSM and ATM promote the proposed BPAT-UNet to further constrain boundaries, whereas AMFFM assists to detect small objects. Results: Compared to other classical segmentation net-works, the proposed BPAT-UNet displays superior segmentation performance in visualization results and evaluation metrics. Significant improvement of segmentation accuracy was shown on the public thyroid dataset of TN3k with Dice similarity coefficient (DSC) of 81.64 % and 95th percentage of the asymmet-ric Hausdorff distance (HD95) of 14.06, whereas those on our private dataset were with DSC of 85.63 % and HD95 of 14.53, respectively. Conclusions: This paper presents a method for thyroid ultrasound im-age segmentation, which achieves high accuracy and meets the clinical requirements. Code is available at https://github.com/ccjcv/BPAT-UNet .& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] ConvWin-UNet: UNet-like hierarchical vision Transformer combined with convolution for medical image segmentation
    Feng, Xiaomeng
    Wang, Taiping
    Yang, Xiaohang
    Zhang, Minfei
    Guo, Wanpeng
    Wang, Weina
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (01) : 128 - 144
  • [22] CA-UNet: Convolution and attention fusion for lung nodule segmentation
    Wang, Tong
    Wu, Fubin
    Lu, Haoran
    Xu, Shengzhou
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1469 - 1479
  • [23] Thyroid Nodule Ultrasound Image Segmentation Based on Improved Swin Transformer
    Wu, Yue
    Huang, Lin
    Yang, Tiejun
    IEEE ACCESS, 2025, 13 : 19788 - 19795
  • [24] MLFE-UNet: Multi-Level Feature Extraction Transformer-Based UNet for Gastrointestinal Disease Segmentation
    Garbaz, Anass
    Oukdach, Yassine
    Charfi, Said
    El Ansari, Mohamed
    Koutti, Lahcen
    Salihoun, Mouna
    Lafraxo, Samira
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2025, 35 (01)
  • [25] InvUNET: Involuted UNET for Breast Tumor Segmentation from Ultrasound
    Chavan, Trupti
    Prajapati, Kalpesh
    Rao, Kameshwar J., V
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2022, 2022, 13263 : 283 - 290
  • [26] Combining Swin Transformer With UNet for Remote Sensing Image Semantic Segmentation
    Fan, Lili
    Zhou, Yu
    Liu, Hongmei
    Li, Yunjie
    Cao, Dongpu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 11
  • [27] Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation
    He, Xin
    Zhou, Yong
    Zhao, Jiaqi
    Zhang, Di
    Yao, Rui
    Xue, Yong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] Attention Swin Transformer UNet for Landslide Segmentation in Remotely Sensed Images
    Liu, Bingxue
    Wang, Wei
    Wu, Yuming
    Gao, Xing
    REMOTE SENSING, 2024, 16 (23)
  • [29] Multi-scale nested UNet with transformer for colorectal polyp segmentation
    Wang, Zenan
    Liu, Zhen
    Yu, Jianfeng
    Gao, Yingxin
    Liu, Ming
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (06):
  • [30] META-Unet: Multi-Scale Efficient Transformer Attention Unet for Fast and High-Accuracy Polyp Segmentation
    Wu, Huisi
    Zhao, Zebin
    Wang, Zhaoze
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (03) : 4117 - 4128