Improvement of Winter Wheat Aboveground Biomass Estimation Using Digital Surface Model Information Extracted from Unmanned-Aerial-Vehicle-Based Multispectral Images

被引:4
|
作者
Guo, Yan [1 ,2 ,3 ]
He, Jia [1 ,2 ]
Zhang, Huifang [1 ,2 ]
Shi, Zhou [4 ]
Wei, Panpan [1 ,2 ]
Jing, Yuhang [1 ,2 ]
Yang, Xiuzhong [1 ,2 ,3 ]
Zhang, Yan [1 ,2 ,3 ]
Wang, Laigang [1 ,5 ]
Zheng, Guoqing [1 ,2 ,3 ]
机构
[1] Henan Acad Agr Sci, Inst Agr Informat Technol, Zhengzhou 450002, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Huang Huai Hai Smart Agr Technol, Zhengzhou 450002, Peoples R China
[3] Henan Engn Res Ctr Crop Planting Monitoring & Warn, Zhengzhou 450002, Peoples R China
[4] Zhejiang Univ, Coll Environm & Resource Sci, Inst Agr Remote Sensing & Informat Technol Applica, Hangzhou 310058, Peoples R China
[5] Huanghe Sci & Technol Coll, Int Sch, Zhengzhou 450016, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 03期
关键词
aboveground biomass; UAV; height; transferability; BP neural network; machine learning; VEGETATION INDEXES; HEIGHT;
D O I
10.3390/agriculture14030378
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Aboveground biomass (AGB) is an important indicator for characterizing crop growth conditions. A rapid and accurate estimation of AGB is critical for guiding the management of farmland and achieving production potential, and it can also provide vital data for ensuring food security. In this study, by applying different water and nitrogen treatments, an unmanned aerial vehicle (UAV) equipped with a multispectral imaging spectrometer was used to acquire images of winter wheat during critical growth stages. Then, the plant height (Hdsm) extracted from the digital surface model (DSM) information was used to establish and improve the estimation model of AGB, using the backpropagation (BP) neural network, a machine learning method. The results show that (1) the R2, root-mean-square error (RMSE), and relative predictive deviation (RPD) of the AGB estimation model, constructed directly using the Hdsm, are 0.58, 4528.23 kg/hm2, and 1.25, respectively. The estimated mean AGB (16,198.27 kg/hm2) is slightly smaller than the measured mean AGB (16,960.23 kg/hm2). (2) The R2, RMSE, and RPD of the improved AGB estimation model, based on AGB/Hdsm, are 0.88, 2291.90 kg/hm2, and 2.75, respectively, and the estimated mean AGB (17,478.21 kg/hm2) is more similar to the measured mean AGB (17,222.59 kg/hm2). The improved AGB estimation model boosts the accuracy by 51.72% compared with the AGB directly estimated using the Hdsm. Moreover, the improved AGB estimation model shows strong transferability in regard to different water treatments and different year scenarios, but there are differences in the transferability for different N-level scenarios. (3) Differences in the characteristics of the data are the key factors that lead to the different transferability of the AGB estimation model. This study provides an antecedent in regard to model construction and transferability estimation of AGB for winter wheat. We confirm that, when different datasets have similar histogram characteristics, the model is applicable to new scenarios.
引用
收藏
页数:17
相关论文
共 41 条
  • [41] Ultra-resolution unmanned aerial vehicle (UAV) and digital surface model (DSM) data-based automatic extraction of urban features using object-based image analysis approach in Gurugram, Haryana
    Chauhan, Nitin
    Kumar, Ritesh
    Mukherjee, Semonti
    Hazra, Anupam
    Giri, Kushal
    APPLIED GEOMATICS, 2022, 14 (04) : 751 - 764