The imbalance between N2O production and reduction by multi-microbial communities determines sedimentary N2O emission potential in the Pearl River Estuary

被引:4
|
作者
Hu, Yaohao [1 ,2 ]
Wu, Jiapeng [1 ]
Ye, Jiaqi [1 ]
Liu, Xiaohan [1 ]
Wang, Yu [1 ]
Ye, Fei [1 ]
Hong, Yiguo [1 ]
机构
[1] Guangzhou Univ, Inst Environm Res Greater Bay Area, Key Lab Water Qual & Conservat Pearl River Delta, Minist Educ, Guangzhou 510006, Peoples R China
[2] Chinese Acad Sci, State Key Lab Organ Geochem, Guangzhou Inst Geochem, Guangzhou 510640, Peoples R China
关键词
Nitrous oxide; Denitrification; N2O production; N2O reduction; Multi-microbial communities; Estuarine sediments; NITROUS-OXIDE REDUCTASE; INORGANIC NITROGEN; DENITRIFICATION; NITRIFICATION; BACTERIA; WATER; ABUNDANCE; SALINITY; RELEASE; ANAMMOX;
D O I
10.1016/j.marenvres.2023.106119
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Denitrification is the dominant process of nitrogen removal and nitrous oxide (N2O) emissions in estuarine ecosystems. However, little is known regarding the microbial mechanism of the production and reduction of N2O in estuaries. We investigated in situ dissolved N2O as well as potential N2O production rate (NPR), reduction rate (NRR), and emission rate (NER), and key functional genes related to N2O transformation of denitrification in the Pearl River Estuary. Higher N2O emission potential was found in the upstream and midstream regions with higher NPR and lower NRR values. In contrast, higher NRR values were detected in downstream. Notably, nirS and nirK type N2O producers dominated the upstream zone, whereas abundant N2O reducers, especially nosZ II type N2O reducers, were observed in downstream. Most importantly, the gene abundance ratio (Rnir/nosZ) was significantly correlated with the N2O emission potential (Re). Niche differentiation between N2O producers and N2O reducers from upstream to downstream affected N2O emission potential. This study highlights the N2O emission potential in estuarine sediments is determined by an imbalance between N2O production and the reduction of multi-bacterial communities.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Nitrification derived N2O emission increases but denitrification derived N2O emission decreases with N enrichment in both topsoil and subsoil
    Song, Lei
    Pan, Junxiao
    Wang, Jinsong
    Yan, Yingjie
    Niu, Shuli
    CATENA, 2023, 222
  • [42] Mites reduce microbial N2O emissions
    Otto G.
    Nature Reviews Microbiology, 2021, 19 (5) : 284 - 284
  • [43] N2, N2O and O2 profiles in a Tagus estuary salt marsh
    Cartaxana, P
    Lloyd, D
    ESTUARINE COASTAL AND SHELF SCIENCE, 1999, 48 (06) : 751 - 756
  • [44] Unprecedented N2O production by nitrate-ammonifying Geobacteraceae with distinctive N2O isotopocule signatures
    Xu, Zhenxing
    Hattori, Shohei
    Masuda, Yoko
    Toyoda, Sakae
    Koba, Keisuke
    Yu, Pei
    Yoshida, Naohiro
    Du, Zong-Jun
    Senoo, Keishi
    MBIO, 2024, 15 (12)
  • [45] Sources and sinks of N2O in the subtropical Jiulong River Estuary, Southeast China
    Li, Yuhong
    Luo, Yang
    Liu, Jian
    Ye, Wangwang
    Zhang, Jiexia
    Zhan, Liyang
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [46] Effects of dam building on N2O-producing and N2O-reducing community structures in river sediments and the associated N2O emission potential
    Wang, Yuantao
    Zhang, Shenghua
    Jin, Huixia
    Chen, Jiwei
    Zhou, Ketao
    Chen, Jinxi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 887
  • [47] On the potential of δ18O and δ15N to assess N2O reduction to N2 in soil
    Decock, C.
    Six, J.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2013, 64 (05) : 610 - 620
  • [48] Potential N2O Emissions from the Tanks of Bromeliads Suggest an Additional Source of N2O in the Neotropics
    Marcel Suleiman
    Franziska B. Brandt
    Kristof Brenzinger
    Guntars O. Martinson
    Gesche Braker
    Microbial Ecology, 2017, 73 : 751 - 754
  • [49] Potential N2O Emissions from the Tanks of Bromeliads Suggest an Additional Source of N2O in the Neotropics
    Suleiman, Marcel
    Brandt, Franziska B.
    Brenzinger, Kristof
    Martinson, Guntars O.
    Braker, Gesche
    MICROBIAL ECOLOGY, 2017, 73 (04) : 751 - 754
  • [50] N2O production in the eastern South Atlantic: Analysis of N2O stable isotopic and concentration data
    Frame, Caitlin H.
    Deal, Eric
    Nevison, Cynthia D.
    Casciotti, Karen L.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2014, 28 (11) : 1262 - 1278