Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe2 nanoparticles for high-performance potassium-ion and lithium-ion batteries

被引:30
|
作者
Ye, Jiajia [1 ,2 ]
Chen, Zizhong [3 ]
Zheng, Zhiqiang [2 ]
Fu, Zhanghua [2 ]
Gong, Guanghao [2 ]
Xia, Guang [4 ]
Hu, Cheng [1 ,2 ]
机构
[1] Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[2] Shandong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China
[3] Shandong Univ, State Key Lab Crystal Mat, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem,Minist Educ, Jinan 250100, Shandong, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob SINANO, I Lab, Suzhou 215123, Jiangsu, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SP co-doping; NiSe2; nanoparticles; Hollow carbon nanospheres; Potassium-ion batteries; Lithium-ion batteries; SODIUM-ION; PHOSPHORUS; NANOSHEETS; GRAPHENE; STORAGE; ANODE; ELECTROLYTE; NITROGEN; STATE;
D O I
10.1016/j.jechem.2022.12.052
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change, especially for the large-sized potassium-ions in secondary batteries. In this work, hollow carbon (HC) nanospheres embedded with S,P co-doped NiSe2 nanoparticles are fabricated by ``drop and dry" and ``dissolving and precipitation" processes to form Ni(OH) (2) nanocrystals followed by annealing with S and P dopants to form nanoparticles. The resultant S,P-NiSe2/HC composite exhibits excellent cyclic performance with 131.6 mA h g(-1) at 1000 mA g(-1) after 3000 cycles for K+ storage and a capacity of 417.1 mA h g(-1) at 1000 mA g(-1) after 1000 cycles for Li+ storage. K-ion full cells are assembled and deliver superior cycling stability with a capacity of 72.5 mA h g(-1) at 200 mA g(-1) after 500 cycles. The hollow carbon shell with excellent electrical conductivity effectively promotes the transportation and tolerates large volume variation for both K+ and Li+. Density functional theory calculations confirm that the S and P co-doping NiSe2 enables stronger adsorption of K+ ions and higher electrical conductivity that contributes to the improved electrochemical performance. (c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:401 / 411
页数:11
相关论文
共 50 条
  • [41] Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries
    Cai, Dandan
    Wang, Changshui
    Shi, Caiyan
    Tan, Ni
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 731 : 235 - 242
  • [42] Polymer derived mesoporous hard carbon nanospheres as high-performance anode materials for potassium-ion batteries
    Xia, Peng
    Qin, Zhaoxia
    Jing, Shengdong
    Li, Shilan
    Peng, Xiaoli
    Yuan, Long
    Lu, Shengjun
    Zhang, Yufei
    Fan, Haosen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 701
  • [43] Small-Sized CuS Nanoparticles/N, S Co-Doped rGO Composites as the Anode Materials for High-Performance Lithium-Ion Batteries
    Ding, Xueda
    Lei, Song
    Du, Chengfeng
    Xie, Zailai
    Li, Jianrong
    Huang, Xiaoying
    ADVANCED MATERIALS INTERFACES, 2019, 6 (06):
  • [44] Turning carbon black into hollow carbon nanospheres to encapsulate Fe2O3 as high-performance lithium-ion batteries anode
    Shi, Qing
    Zhou, Yue
    Cheng, Jie
    Pan, Yanxia
    Wu, Yujia
    Zhu, Licai
    Yuan, Zhongzhi
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 332
  • [45] Co9S8 confined in bifunctional N/S co-doped carbon/carbon with high electrochemical performance for lithium-ion batteries
    Wu, Yinglong
    Zhu, Chao
    Shu, Lin
    Duan, Junfei
    Wei, Donghai
    Xu, Jiaxiong
    Zhu, Zhiying
    Li, Lingjun
    Peng, Zhuoyin
    Chen, Zhaoyong
    APPLIED SURFACE SCIENCE, 2019, 489 : 528 - 537
  • [46] ZnSe nanoparticles decorated with hollow N -doped carbon nanocubes for high-performance anode material of sodium ion batteries
    Jia, Miao
    Jin, Yuhong
    Zhao, Chenchen
    Zhao, Peizhu
    Jia, Mengqiu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 831
  • [47] Electrospun three dimensional TiO2@N/P co-doped carbon nanofibers framework as high-performance anode materials for lithium-ion batteries
    Pan, Shi
    Xin, Yu
    Miao, Chang
    Nie, Shuqing
    Xiao, Wei
    ELECTROCHIMICA ACTA, 2024, 503
  • [48] Ultrahigh level nitrogen/sulfur co-doped carbon as high performance anode materials for lithium-ion batteries
    Qiu, Zhaozheng
    Lin, Yemao
    Xin, Hailin
    Han, Pei
    Li, Dongzhi
    Yang, Bo
    Li, Pengchong
    Ullah, Shahid
    Fan, Haosen
    Zhu, Caizhen
    Xu, Jian
    CARBON, 2018, 126 : 85 - 92
  • [49] Hollow carbon nanospheres with optimized nitrogen configuration controlled by heteroatom doping for high-performance potassium-ion storage
    Dai, Yao
    Qu, Zong-Tao
    Wang, Wen-Kang
    Li, Min -Shan
    Chen, Kai-Xuan
    Lyu, Shu-Shen
    CARBON, 2024, 224
  • [50] N-doped hollow carbon nanofibers anchored hierarchical FeP nanosheets as high-performance anode for potassium-ion batteries
    Wang, Xiujuan
    Ma, Jingyao
    Wang, Jiamei
    Li, Xifei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 821