A comparative study of fractional-order models for supercapacitors in electric vehicles

被引:3
|
作者
Zhang, Qiao [1 ]
Wei, Kaizhong [1 ]
机构
[1] Liaoning Univ Technol, Sch Automobile & Traff Engn, Jinzhou 121000, Peoples R China
来源
关键词
Supercapacitors; Fractional-order models; Genetic algorithm; Electric vehicles; DIFFERENTIAL-EQUATIONS; PARAMETERS;
D O I
10.1016/j.ijoes.2023.100441
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Fractional-order models display many advantages compared with integer-order equivalent circuit models for modeling energy storage system, such as more precision, fewer parameters. This paper carries out a comparative study of fractional-order equivalent circuit models for modeling supercapacitor. These models are fractionalorder RC model, fractional-order classic model, fractional-order RRCW model, fractional-order dynamic model, fractional-order transmission line model. An experiment load platform is built to test the supercapacitor for collecting the feature data. To be fair, the parameters of all models are optimized to achieve their best fitting accuracy by using the genetic algorithm. Accuracy and complexity two indices are considered to evaluate the above five models based on different test cycles. Simulation results show that the fractional-order RRCW model has the ideally comprehensive performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Diffusion process modeling by using fractional-order models
    Sierociuk, Dominik
    Skovranek, Tomas
    Macias, Michal
    Podlubny, Igor
    Petras, Ivo
    Dzielinski, Andrzej
    Ziubinski, Pawel
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 2 - 11
  • [42] Study Models of COVID-19 in Discrete-Time and Fractional-Order
    Djeddi, Kamel
    Bouali, Tahar
    Msmali, Ahmed H.
    Ahmadini, Abdullah Ali H.
    Koam, Ali N. A.
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [43] A Class of Fractional-Order Variational Image Inpainting Models
    Zhang, Y.
    Pu, Y-F
    Hu, J-R
    Zhou, J-L
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (02): : 299 - 306
  • [44] Fractional-Order Models in Motor Polarization Index Measurements
    Gonzalez, Emmanuel A.
    Castro, Michael J. B.
    Presto, Rolly S.
    Radi, Marwan
    Petras, Ivo
    PROCEEDINGS OF THE 2016 17TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2016, : 214 - 217
  • [45] The analytical analysis of nonlinear fractional-order dynamical models
    Xu, Jiabin
    Khan, Hassan
    Shah, Rasool
    Alderremy, A. A.
    Aly, Shaban
    Baleanu, Dumitru
    AIMS MATHEMATICS, 2021, 6 (06): : 6201 - 6219
  • [46] THE POSITIVITY OF SOLUTIONS TO CAPUTO FRACTIONAL-ORDER SEIR MODELS
    Wu, Cong
    Fan, Xuemeng
    Tang, Tong
    Shen, Bairong
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2023, 35 (04) : 487 - 501
  • [47] Fractional-order derivatives in cosmological models of accelerated expansion
    Shchigolev, V. K.
    MODERN PHYSICS LETTERS A, 2021, 36 (14)
  • [48] Optimal Digital Implementation of Fractional-Order Models in a Microcontroller
    Matusiak, Mariusz
    Bakala, Marcin
    Wojciechowski, Rafal
    ENTROPY, 2020, 22 (03)
  • [49] Global Sensitivity Analysis of Fractional-Order Viscoelasticity Models
    Miles, Paul R.
    Pash, Graham T.
    Smith, Ralph C.
    Oates, William S.
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS XIII, 2019, 10968
  • [50] Fractional-Order Tabu Learning Neuron Models and Their Dynamics
    Yu, Yajuan
    Gu, Zhenhua
    Shi, Min
    Wang, Feng
    FRACTAL AND FRACTIONAL, 2024, 8 (07)