epiAneufinder identifies copy number alterations from single-cell ATAC-seq data

被引:9
|
作者
Ramakrishnan, Akshaya [1 ]
Symeonidi, Aikaterini [1 ,2 ]
Hanel, Patrick [1 ,2 ]
Schmid, Katharina T. [2 ]
Richter, Maria L. [2 ]
Schubert, Michael [3 ]
Colome-Tatche, Maria [1 ,2 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Computat Biol, Neuherberg, Germany
[2] Ludwig Maximilians Univ Munchen, Fac Med, Biomed Ctr BMC, Physiol Chem, Martinsried, Germany
[3] Netherlands Canc Inst, Oncode Inst, Div Cell Biol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
关键词
ANEUPLOIDY PARADOX; CHROMATIN;
D O I
10.1038/s41467-023-41076-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell open chromatin profiling via scATAC-seq has become a mainstream measurement of open chromatin in single-cells. Here we present epiAneufinder, an algorithm that exploits the read count information from scATAC-seq data to extract genome-wide copy number alterations (CNAs) for individual cells, allowing the study of CNA heterogeneity present in a sample at the single-cell level. Using different cancer scATAC-seq datasets, we show that epiAneufinder can identify intratumor clonal heterogeneity in populations of single cells based on their CNA profiles. We demonstrate that these profiles are concordant with the ones inferred from single-cell whole genome sequencing data for the same samples. EpiAneufinder allows the inference of single-cell CNA information from scATAC-seq data, without the need of additional experiments, unlocking a layer of genomic variation which is otherwise unexplored. 'Here the authors present epiAneufinder, an algorithm for the identification of single-cell copy number alterations from scATAC-seq data, and explore the clonal heterogeneity in cell populations.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Fundamental and practical approaches for single-cell ATAC-seq analysis
    Peiyu Shi
    Yage Nie
    Jiawen Yang
    Weixing Zhang
    Zhongjie Tang
    Jin Xu
    aBIOTECH, 2022, 3 : 212 - 223
  • [22] Single-cell ATAC-seq signal extraction and enhancement with SCATE
    Ji, Zhicheng
    Zhou, Weiqiang
    Hou, Wenpin
    Ji, Hongkai
    GENOME BIOLOGY, 2020, 21 (01)
  • [23] scReadSim: a single-cell RNA-seq and ATAC-seq read simulator
    Guanao Yan
    Dongyuan Song
    Jingyi Jessica Li
    Nature Communications, 14
  • [24] scReadSim: a single-cell RNA-seq and ATAC-seq read simulator
    Yan, Guanao
    Song, Dongyuan
    Li, Jingyi Jessica
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [25] Discovering single nucleotide variants and indels from bulk and single-cell ATAC-seq
    Massarat, Arya R.
    Sen, Arko
    Jaureguy, Jeff
    Tyndale, Selene T.
    Fu, Yi
    Erikson, Galina
    McVicker, Graham
    NUCLEIC ACIDS RESEARCH, 2021, 49 (14) : 7986 - 7994
  • [26] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Gonzalez-Blas, Carmen Bravo
    Minnoye, Liesbeth
    Papasokrati, Dafni
    Aibar, Sara
    Hulselmans, Gert
    Christiaens, Valerie
    Davie, Kristofer
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2019, 16 (05) : 397 - +
  • [27] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Carmen Bravo González-Blas
    Liesbeth Minnoye
    Dafni Papasokrati
    Sara Aibar
    Gert Hulselmans
    Valerie Christiaens
    Kristofer Davie
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2019, 16 : 397 - 400
  • [28] Integrative Single-Cell RNA-Seq and Single-Cell ATAC-Seq Analysis of Human Plasma Cell Differentiation
    Alaterre, Elina
    Ovejero, Sara
    Espeli, Marion
    Fest, Thierry
    Cogne, Michel
    Milpied, Pierre
    Cavalli, Giacomo
    Moreaux, Jerome
    BLOOD, 2023, 142
  • [29] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Fang, Rongxin
    Preissl, Sebastian
    Li, Yang
    Hou, Xiaomeng
    Lucero, Jacinta
    Wang, Xinxin
    Motamedi, Amir
    Shiau, Andrew K.
    Zhou, Xinzhu
    Xie, Fangming
    Mukamel, Eran A.
    Zhang, Kai
    Zhang, Yanxiao
    Behrens, M. Margarita
    Ecker, Joseph R.
    Ren, Bing
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [30] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Rongxin Fang
    Sebastian Preissl
    Yang Li
    Xiaomeng Hou
    Jacinta Lucero
    Xinxin Wang
    Amir Motamedi
    Andrew K. Shiau
    Xinzhu Zhou
    Fangming Xie
    Eran A. Mukamel
    Kai Zhang
    Yanxiao Zhang
    M. Margarita Behrens
    Joseph R. Ecker
    Bing Ren
    Nature Communications, 12