On the effect of particle update modes in particle swarm optimisation

被引:0
|
作者
Dong, Nanjiang [1 ]
Wang, Rui [1 ]
Zhang, Tao [1 ]
Ou, Junwei [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
evolutionary computation; particle swarm optimisation; PSO; population size; multi-objective optimisation; DISTANCE;
D O I
10.1504/IJBIC.2023.132784
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimisation has been successfully applied in various single- and multi-objective optimisation problems. Through the literature review, it is shown that in PSO-based algorithms particles are updated mainly in two different modes. Specifically, the first mode denoted as PSO-a uses random vectors in [0, 1](n) in the particle update process. The second mode denoted as PSO-b uses random variables in [0, 1]. This study systematically analysed the effect of different modes on a varied set of benchmarks. Experimental results show that the PSO-a mode is more suitable for single-objective optimisation while the PSO-b has certain advantages for multi-objective optimisation due to the regularity of multi-objective problems. Also, the introduction of a mutation operator into PSO-b can overcome the limit of dimension. Moreover, to guarantee finding the optimal solution, the swarm size must be larger than the problem dimensionality when PSO-b is purely adopted.
引用
收藏
页码:230 / 239
页数:11
相关论文
共 50 条
  • [21] Particle Swarm Optimisation Applications in FACTS Optimisation Problem
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    Wahab, Noor Izzri Abdul
    Abd Kadir, Mohd Zainal Abidin
    PROCEEDINGS OF THE 2013 IEEE 7TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO2013), 2013, : 193 - 198
  • [22] Location optimisation for antennas by asynchronous particle swarm optimisation
    Liao, Shu-Han
    Chiu, Chien-Ching
    Ho, Min-Hui
    IET COMMUNICATIONS, 2013, 7 (14) : 1510 - 1516
  • [23] Particle swarm optimisation for dynamic optimisation problems: a review
    Jordehi, Ahmad Rezaee
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1507 - 1516
  • [24] Particle swarm optimisation for dynamic optimisation problems: a review
    Ahmad Rezaee Jordehi
    Neural Computing and Applications, 2014, 25 : 1507 - 1516
  • [25] Particle swarm optimisation for discrete optimisation problems: a review
    Ahmad Rezaee Jordehi
    Jasronita Jasni
    Artificial Intelligence Review, 2015, 43 : 243 - 258
  • [26] Particle swarm optimisation for discrete optimisation problems: a review
    Jordehi, Ahmad Rezaee
    Jasni, Jasronita
    ARTIFICIAL INTELLIGENCE REVIEW, 2015, 43 (02) : 243 - 258
  • [27] Particle swarm optimisation strategies for IOL formula constant optimisation
    Langenbucher, Achim
    Szentmary, Nora
    Cayless, Alan
    Wendelstein, Jascha
    Hoffmann, Peter
    ACTA OPHTHALMOLOGICA, 2023, 101 (07) : 775 - 782
  • [28] A Dynamic Neighbourhood Particle Swarm Optimisation Algorithm for Constrained Optimisation
    Li, Lily D.
    Yu, Xinghuo
    Li, Xiaodong
    Guo, William
    IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011,
  • [29] Transistor Sizing Using Particle Swarm Optimisation
    White, Lyndon
    While, Lyndon
    Deeks, Ben
    Boussaid, Farid
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 259 - 266
  • [30] Particle swarm optimisation from lbest to gbest
    Liu, Hongbo
    Li, Bo
    Ji, Ye
    Sun, Tong
    APPLIED SOFT COMPUTING TECHNOLOGIES: THE CHALLENGE OF COMPLEXITY, 2006, 34 : 537 - 545