Invertible Kernel PCA With Random Fourier Features

被引:6
|
作者
Gedon, Daniel [1 ]
Ribeiro, Antonio H. [1 ]
Wahlstrom, Niklas [1 ]
Schon, Thomas B. [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala 75105, Sweden
基金
瑞典研究理事会;
关键词
Principal component analysis; Kernel; Image reconstruction; Dimensionality reduction; Noise reduction; Electrocardiography; Toy manufacturing industry; Denoising; ECG; Index Terms; kernel PCA; pre-image; random Fourier features; reconstruction;
D O I
10.1109/LSP.2023.3275499
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Kernel principal component analysis (kPCA) is a widely studied method to construct a low-dimensional data representation after a nonlinear transformation. The prevailing method to reconstruct the original input signal from kPCA-an important task for denoising-requires us to solve a supervised learning problem. In this paper, we present an alternative method where the reconstruction follows naturally from the compression step. We first approximate the kernel with random Fourier features. Then, we exploit the fact that the nonlinear transformation is invertible in a certain subdomain. Hence, the name invertible kernel PCA (ikPCA). We experiment with different data modalities and show that ikPCA performs similarly to kPCA with supervised reconstruction on denoising tasks, making it a strong alternative.
引用
收藏
页码:563 / 567
页数:5
相关论文
共 50 条
  • [1] On Kernel Derivative Approximation with Random Fourier Features
    Szabo, Zoltan
    Sriperumbudur, Bharath K.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 827 - 836
  • [2] KERNEL REGRESSION ON GRAPHS IN RANDOM FOURIER FEATURES SPACE
    Elias, Vitor R. M.
    Gogineni, Vinay C.
    Martins, Wallace A.
    Werner, Stefan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5235 - 5239
  • [3] Efficient Kernel Clustering Using Random Fourier Features
    Chitta, Radha
    Jin, Rong
    Jain, Anil K.
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 161 - 170
  • [4] Kernel Regression Over Graphs Using Random Fourier Features
    Meireles Elias, Vitor Rosa
    Gogineni, Vinay Chakravarthi
    Martins, Wallace A.
    Werner, Stefan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 936 - 949
  • [5] RANDOM FOURIER FEATURES MULTI-KERNEL LMS ALGORITHM
    Gao, Wei
    Song, Meiru
    Chen, Jie
    Zhang, Lingling
    2020 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (IEEE ICSPCC 2020), 2020,
  • [6] Graph Diffusion Kernel LMS using Random Fourier Features
    Gogineni, Vinay Chakravarthi
    Elias, Vitor R. M.
    Martins, Wallace A.
    Werner, Stefan
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1528 - 1532
  • [7] Personalized Learning Using Kernel Methods and Random Fourier Features
    Felix, Clyde James
    Ye, Japhet
    Kuh, Anthony
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Streaming Kernel PCA with (O)over-tilde (√n) Random Features
    Ullah, Enayat
    Mianjy, Poorya
    Marinov, Teodor V.
    Arora, Raman
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [9] Fast Kernel Density Estimation with Density Matrices and Random Fourier Features
    Gallego, Joseph A.
    Osorio, Juan F.
    Gonzalez, Fabio A.
    ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022, 2022, 13788 : 160 - 172
  • [10] Dependent Online Kernel Learning With Constant Number of Random Fourier Features
    Hu, Zhen
    Lin, Ming
    Zhang, Changshui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (10) : 2464 - 2476