Research on Transformer Voiceprint Anomaly Detection Based on Data-Driven

被引:6
|
作者
Yu, Da [1 ]
Zhang, Wei [1 ]
Wang, Hui [2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Informat & Automat, Jinan, Peoples R China
[2] Shandong Univ, Dept Elect Engn, Jinan 250061, Peoples R China
关键词
transformer sound diagnostics; attention mechanism; Mel cepstrum coefficient; Attention-CNN-LSTM; ATTENTION MECHANISM; POWER TRANSFORMERS; DIAGNOSIS;
D O I
10.3390/en16052151
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Condition diagnosis of power transformers using acoustic signals is a nonstop, contactless method of equipment maintenance that can diagnose the transformer's type of abnormal condition. To heighten the accuracy and efficiency of the abnormal method of diagnosing abnormalities by sound, a method for abnormal diagnosis of power transformers based on the Attention-CNN-LSTM hybrid model is proposed. This collects the sound signals emitted by the real power transformer in the normal state, overload, and the discharge condition. It preprocesses the sound signals to obtain the MFCC characteristics of the sound signals. It is then grouped into a set of sound feature vectors by the first- and second-order differences, and enters the Attention-CNN-LSTM hybrid model for training. The training results show that the Attention-CNN-LSTM hybrid model can be used for the status sound detection of power transformers, and the recognition of the three states can achieve an accuracy rate of more than 99%.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Data-Driven Thermal Anomaly Detection in Large Battery Packs
    Bhaskar, Kiran
    Kumar, Ajith
    Bunce, James
    Pressman, Jacob
    Burkell, Neil
    Rahn, Christopher D.
    BATTERIES-BASEL, 2023, 9 (02):
  • [22] Data-Driven Pathwise Sampling Approaches for Online Anomaly Detection
    Li, Dongmin
    Bai, Miao
    Xian, Xiaochen
    TECHNOMETRICS, 2024, 66 (04) : 600 - 613
  • [23] Data-driven anomaly detection using OCSVM with Boundary optimzation
    Guo, Kai
    Liu, Datong
    Peng, Yu
    Peng, Xiyuan
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 244 - 248
  • [24] Data-driven Anomaly Detection with Timing Features for Embedded Systems
    Lu, Sixing
    Lysecky, Roman
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2019, 24 (03)
  • [25] A Data-Driven Method for Diagnosing ATS Architecture by Anomaly Detection
    Zhou, Aimin
    Cheng, Shaowu
    Li, Xiantong
    Li, Kui
    You, Linlin
    Cai, Ming
    SMART TRANSPORTATION SYSTEMS 2022, 2022, 304 : 85 - 93
  • [26] Data-Driven Wireless Anomaly Detection Using Spectral Features
    Frisbie, Stephan
    Younis, Mohamed
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [27] Data-Driven Cyberphysical Anomaly Detection for Microgrids With GFM Inverters
    Liu, Xiaorui
    Li, Hui
    IEEE OPEN JOURNAL OF POWER ELECTRONICS, 2023, 4 : 498 - 511
  • [28] Data-Driven Edge Intelligence for Robust Network Anomaly Detection
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (03): : 1481 - 1492
  • [29] Data-driven Anomaly Detection for Power System Generation Control
    Wang, Pengyuan
    Govindarasu, Manimaran
    Ashok, Aditya
    Sridhar, Siddharth
    McKinnon, David
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 1082 - 1089
  • [30] Data-driven Anomaly Detection for Railway Propulsion Control Systems
    Hodzic, Ajna
    Skulj, Dzenita
    Causevic, Aida
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 4351 - 4356