For a positive integer t$t$, let Ft$F_t$ denote the graph of the txt$t\times t$ grid. Motivated by a 50-year-old conjecture of Erdos about Turan numbers of r$r$-degenerate graphs, we prove that there exists a constant C=C(t)$C=C(t)$ such that ex(n,Ft)<= Cn3/2$\mathrm{ex}(n,F_t)\leqslant Cn<^>{3/2}$. This bound is tight up to the value of C$C$. One of the interesting ingredients of our proof is a novel way of using the tensor power trick.
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Gerener, Daniel
AUSTRALASIAN JOURNAL OF COMBINATORICS,
2021,
79
: 205
-
214
机构:
Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
Grzesik, Andrzej
Janzer, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Dept Math, Zurich, SwitzerlandJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
Janzer, Oliver
Nagy, Zoltan Lorant
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, MTA ELTE Geometr & Algebra Combinator Res Grp, Budapest, HungaryJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland