Proximal algorithm with quasidistances for multiobjective quasiconvex minimization in Riemannian manifolds

被引:0
|
作者
Quiroz, Erik Alex Papa [1 ,2 ]
Rocha, Rogerio Azevedo [3 ]
Oliveira, Paulo [4 ]
Gregorio, Ronaldo [5 ]
机构
[1] Univ Privada Norte, Univ Nacl Mayor San Marcos, Lima, Peru
[2] Univ Fed Goias, Goiania, Brazil
[3] Univ Fed Tocantins, Palmas, Brazil
[4] Univ Fed Rio de Janeiro, Rio de Janeiro, Brazil
[5] Univ Fed Rural Rio de Janeiro, Rio De Janeiro, Brazil
关键词
Proximal point algorithm; multiobjective minimization; quasiconvex functions; Riemannian manifolds; quasidistances; Pareto-Clarke critical point; POINT METHOD; OPTIMIZATION; NASH;
D O I
10.1051/ro/2023101
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a proximal algorithm using quasidistances for multiobjective minimization problems with quasiconvex functions defined in arbitrary Riemannian manifolds. The reason of using quasidistances instead of the classical Riemannian distance comes from the applications in economy, computer science and behavioral sciences, where the quasidistances represent a non symmetric measure. Under some appropriate assumptions on the problem and using tools of Riemannian geometry we prove that accumulation points of the sequence generated by the algorithm satisfy the critical condition of Pareto-Clarke. If the functions are convex then these points are Pareto efficient solutions.
引用
收藏
页码:2301 / 2314
页数:14
相关论文
共 50 条