Delivery of CRISPR/Cas9 Plasmid DNA by Hyperbranched Polymeric Nanoparticles Enables Efficient Gene Editing

被引:7
|
作者
Xiu, Kemao [1 ]
Saunders, Laura [2 ]
Wen, Luan [3 ]
Ruan, Jinxue [3 ]
Dong, Ruonan [1 ]
Song, Jun [3 ]
Yang, Dongshan [3 ]
Zhang, Jifeng [3 ]
Xu, Jie [3 ]
Chen, Y. Eugene [3 ]
Ma, Peter X. X. [1 ,2 ,4 ,5 ]
机构
[1] Univ Michigan, Dept Biol & Mat Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Macromol Sci & Engn Ctr, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Adv Models & Translat Sci & Therapeut, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
nanoparticle; gene delivery; pDNA; CRISPR; Cas9; PEI; polyplex; gene editing; THERAPY; RNA; PROSPECTS;
D O I
10.3390/cells12010156
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Gene editing nucleases such as CRISPR/Cas9 have enabled efficient and precise gene editing in vitro and hold promise of eventually achieving in vivo gene editing based therapy. However, a major challenge for their use is the lack of a safe and effective virus-free system to deliver gene editing nuclease elements. Polymers are a promising class of delivery vehicle due to their higher safety compared to currently used viral vectors, but polymers suffer from lower transfection efficiency. Polymeric vectors have been used for small nucleotide delivery but have yet to be used successfully with plasmid DNA (pDNA), which is often several hundred times larger than small nucleotides, presenting an engineering challenge. To address this, we extended our previously reported hyperbranched polymer (HP) delivery system for pDNA delivery by synthesizing several variants of HPs: HP-800, HP-1.8K, HP-10K, HP-25K. We demonstrate that all HPs have low toxicity in various cultured cells, with HP-25K being the most efficient at packaging and delivering pDNA. Importantly, HP-25K mediated delivery of CRISPR/Cas9 pDNA resulted in higher gene-editing rates than all other HPs and Lipofectamine at several clinically significant loci in different cell types. Consistently, HP-25K also led to more robust base editing when delivering the CRISPR base editor "BE4-max" pDNA to cells compared with Lipofectamine. The present work demonstrates that HP nanoparticles represent a promising class of vehicle for the non-viral delivery of pDNA towards the clinical application of gene-editing therapy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] CRISPR-Cas9 delivery by DNA nanoclews for efficient genome editing
    Sun, Wujin
    Ji, Wenyan
    Hall, Jordan
    Hu, Quanyin
    Wang, Chao
    Beisel, Chase
    Gu, Zhen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [42] Recent advances in stimuli-responsive polymeric carriers for controllable CRISPR/Cas9 gene editing system delivery
    Ma, Panqin
    Wang, Qi
    Luo, Xi
    Mao, Liuzhou
    Wang, Zhanxiang
    Ye, Enyi
    Loh, Xian Jun
    Li, Zibiao
    Wu, Yun-Long
    BIOMATERIALS SCIENCE, 2023, 11 (15) : 5078 - 5094
  • [43] Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing
    Sung, Da
    Sun, Zhanhu
    Jiang, Hongfa
    Vaidya, Amita M.
    Xin, Rui
    Ayat, Nadia R.
    Schilb, Andrew L.
    Qiao, Peter L.
    Han, Zheng
    Naderi, Amirreza
    Lu, Zheng-Rong
    BIOCONJUGATE CHEMISTRY, 2019, 30 (03) : 667 - 678
  • [44] Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9
    LaFountaine, Justin S.
    Fathe, Kristin
    Smyth, Hugh D. C.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2015, 494 (01) : 180 - 194
  • [45] Delivery and Specificity of CRISPR/Cas9 Genome Editing Technologies for Human Gene Therapy
    Gori, Jennifer L.
    Hsu, Patrick D.
    Maeder, Morgan L.
    Shen, Shen
    Welstead, G. Grant
    Bumcrot, David
    HUMAN GENE THERAPY, 2015, 26 (07) : 443 - 451
  • [46] Efficient Editing of an Adenoviral Vector Genome with CRISPR/Cas9
    Li, Qiang
    Wang, Hui
    Gong, Chen-yu
    Chen, Zhao
    Yang, Jia-xing
    Shao, Hong-wei
    Zhang, Wen-feng
    INDIAN JOURNAL OF MICROBIOLOGY, 2021, 61 (01) : 91 - 95
  • [47] Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus
    Boontawon, Tatpong
    Nakazawa, Takehito
    Inoue, Chikako
    Osakabe, Keishi
    Kawauchi, Moriyuki
    Sakamoto, Masahiro
    Honda, Yoichi
    AMB EXPRESS, 2021, 11 (01)
  • [48] Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus
    Tatpong Boontawon
    Takehito Nakazawa
    Chikako Inoue
    Keishi Osakabe
    Moriyuki Kawauchi
    Masahiro Sakamoto
    Yoichi Honda
    AMB Express, 11
  • [49] Efficient Editing of an Adenoviral Vector Genome with CRISPR/Cas9
    Qiang Li
    Hui Wang
    Chen-yu Gong
    Zhao Chen
    Jia-xing Yang
    Hong-wei Shao
    Wen-feng Zhang
    Indian Journal of Microbiology, 2021, 61 : 91 - 95
  • [50] An efficient sorghum protoplast assay for transient gene expression and gene editing by CRISPR/Cas9
    Meng, Ruirui
    Wang, Chenchen
    Wang, Lihua
    Liu, Yanlong
    Zhan, Qiuwen
    Zheng, Jiacheng
    Li, Jieqin
    PEERJ, 2020, 8