Graphene nanoribbons: High-quality conductive additive for high performance aqueous zinc-ion batteries

被引:2
|
作者
Xiang, Yongsheng [1 ]
Tang, Bin [1 ]
Zhou, Minquan [1 ]
Li, Xinlu [1 ]
Wang, Ronghua [1 ]
机构
[1] Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400030, Peoples R China
基金
美国国家科学基金会;
关键词
Zinc -ion batteries; Conductive additive; Graphene nanoribbons; Vanadium oxide; Manganese oxide; CATHODE; CHALLENGES; MECHANISM;
D O I
10.1016/j.est.2024.110530
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As an important part of the cathode of aqueous zinc -ion batteries (ZIBs), conductive additive plays an important role in its electrochemical performance. Herein, we initiate graphene nanoribbons (GNRs) as a novel conductive additive for ZIBs, and find that GNRs have satisfactory compatibility with different cathode materials and can form a unique "face-to-face" continuous conductive network within the electrode, thus achieve better comprehensive improvement effect on electrodes' electronic/ionic conductivity compared with traditional carbon black, and significantly improve the rate capability together with cycle stability. To be specific, the GNRs conductive additive successfully increased the specific discharge capacity of ZnxV2O5 from 389.5 mAh g-1 of acetylene black (365.1 mAh g-1 of ketjen black, 377.1 mAh g-1 of super P) to 487.0 mAh g-1 at 0.1 A g-1, and boosted the capacity retention rate from 66.8 % to 104.6 % after 5000 cycles at 5 A g-1. The effect of different amount of GNRs on the electrochemical properties of the cathode is also systematically explored. In addition, the specific discharge capacity of alpha-MnO2 is also enhanced by about 122 % at 0.1 A g-1. Therefore, the application of GNRs as a novel conductive additive for ZIBs provides an extremely promising path for the development of highperformance ZIBs.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Controlling Defects in Graphene Film for Enhanced-Quality Current Collector of Zinc-Ion Batteries with High Performance
    Lee, Young-Geun
    An, Geon-Hyoung
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2023, 33 (04): : 159 - 163
  • [22] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Xing-hua Qin
    Ye-hong Du
    Peng-chao Zhang
    Xin-yu Wang
    Qiong-qiong Lu
    Ai-kai Yang
    Jun-cai Sun
    International Journal of Minerals Metallurgy and Materials, 2021, 28 (10) : 1684 - 1692
  • [23] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Qin, Xing-hua
    Du, Ye-hong
    Zhang, Peng-chao
    Wang, Xin-yu
    Lu, Qiong-qiong
    Yang, Ai-kai
    Sun, Jun-cai
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1684 - 1692
  • [24] High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries
    Xianyu Liu
    Qiongqiong Lu
    Aikai Yang
    Yitai Qian
    ChineseChemicalLetters, 2023, 34 (06) : 593 - 596
  • [25] High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries
    Liu, Xianyu
    Lu, Qiongqiong
    Yang, Aikai
    Qian, Yitai
    CHINESE CHEMICAL LETTERS, 2023, 34 (06)
  • [26] VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries
    Chen, Tao
    Zhu, Xiaoquan
    Chen, Xifan
    Zhang, Qicheng
    Li, Yang
    Peng, Wenchao
    Zhang, Fengbao
    Fan, Xiaobin
    JOURNAL OF POWER SOURCES, 2020, 477 (477)
  • [27] Eco-Friendly High-Performance Symmetric All-COF/Graphene Aqueous Zinc-Ion Batteries
    Yi, Pengshu
    Li, Zhiheng
    Ma, Longli
    Feng, Bingjian
    Liu, Zhu
    Liu, Yongshuai
    Lu, Wenyi
    Cao, Shaochong
    Fang, Huayi
    Ye, Mingxin
    Shen, Jianfeng
    ADVANCED MATERIALS, 2024, 36 (52)
  • [28] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [29] Malic acid additive with a dual regulating mechanism for high-performances aqueous zinc-ion batteries
    Zhao, Zhongwei
    Huang, Yun
    Guo, Bingshu
    Wang, Xichang
    Zhang, Yunhe
    Li, Xing
    Wang, Mingshan
    Lin, Yuanhua
    Cao, Haijun
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [30] Aqueous Zinc-ion Batteries
    Xie, Zhiying
    Zheng, Xinhua
    Wang, Mingming
    Yu, Haizhou
    Qiu, Xiaoyan
    Chen, Wei
    PROGRESS IN CHEMISTRY, 2023, 35 (11) : 1701 - 1726