Mesoporous MgO enriched in Lewis base sites as effective catalysts for efficient CO2 capture

被引:10
|
作者
Wang, Lei [1 ]
Yao, Yi [2 ,3 ]
Tran, Trinh [1 ]
Lira, Patrick [1 ]
Davis, Richard [1 ]
Sun, Zhao [4 ]
Lai, Qinghua [2 ,3 ]
Toan, Sam [1 ]
Luo, Jianmin [5 ,6 ]
Huang, Yudai [7 ,8 ]
Hu, Yun Hang [9 ]
Fan, Maohong [2 ,3 ,10 ]
Sternberg, P. E. Steven
机构
[1] Univ Minnesota, Dept Chem Engn, Duluth, MN 55812 USA
[2] Univ Wyoming, Coll Engn & Phys Sci, Laramie, WY 82071 USA
[3] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA
[4] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
[5] Shaoguan Univ, Sch Chem & Civil Engn, Shaoguan 512005, Peoples R China
[6] Ningbo Shanshan New Mat Sci & Technol Co Ltd, Ningbo 315177, Peoples R China
[7] Xinjiang Univ, State Key Lab Chem & Utilizat Carbon Based Energy, Urumqi 830017, Peoples R China
[8] Xinjiang Univ, Coll Chem, Urumqi 830017, Peoples R China
[9] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA
[10] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA
关键词
CO; 2; capture; Flue gas; Monoethanolamine; Surface oxygen vacancy; Basic site density; CARBON CAPTURE; CHEMISTRY; SURFACE; AREA;
D O I
10.1016/j.jenvman.2023.117398
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Capturing CO2 has become increasingly important. However, wide industrial applications of conventional CO2 capture technologies are limited by their slow CO2 sorption and desorption kinetics. Accordingly, this research is designed to overcome the challenge by synthesizing mesoporous MgO nanoparticles (MgO-NPs) with a new method that uses PEG 1500 as a soft template. MgO surface structure is nonstoichiometric due to its distinctive shape; the abundant Lewis base sites provided by oxygen vacancies promote CO2 capture. Adding 2 wt % MgONPs to 20 wt % monoethanolamine (MEA) can increase the breakthrough time (the time with 90% CO2 capturing efficiency) by -3000% and can increase the CO2 absorption capacity within the breakthrough time by -3660%. The data suggest that MgO-NPs can accelerate the rate and increase CO2 desorption capacity by up to -8740% and -2290% at 90 degrees C, respectively. Also, the excellent stability of the system within 50 cycles is verified. These findings demonstrate a new strategy to innovate MEA absorbents currently widely used in commercial postcombustion CO2 capture plants.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Regenerable CO2 capture with MGO sorbent.
    Breault, RW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U467 - U467
  • [22] Bimodal Mesoporous Carbon-Coated MgO Nanoparticles for CO2 Capture at Moderate Temperature Conditions
    Zhang, Zhongzheng
    Li, Jianyuan
    Sun, Jian
    Wang, Hui
    Wei, Wei
    Sun, Yuhan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (29) : 7880 - 7887
  • [23] Mesoporous alumina-supported layered double hydroxides for efficient CO2 capture
    Wu, Kai
    Ye, Qing
    Wang, Lanyang
    Meng, Fanwei
    Dai, Hongxing
    JOURNAL OF CO2 UTILIZATION, 2022, 60
  • [24] Efficient 3-aminopropyltrimethoxysilane functionalised mesoporous ceria nanoparticles for CO2 capture
    Azmi, A. A.
    Ruhaimi, A. H.
    Aziz, M. A. A.
    MATERIALS TODAY CHEMISTRY, 2020, 16
  • [25] Development of facile synthesized mesoporous carbon composite adsorbent for efficient CO2 capture
    Zhao, Peiyu
    Yin, Yanchao
    Cheng, Wei
    Xu, Xianmang
    Yang, Deliang
    Yuan, Wenpeng
    JOURNAL OF CO2 UTILIZATION, 2021, 50
  • [26] Quantifying the efficiency of CO2 capture by Lewis pairs
    Chi, Jay J.
    Johnstone, Timothy C.
    Voicu, Dan
    Mehlmann, Paul
    Dielmann, Fabian
    Kumacheva, Eugenia
    Stephan, Douglas W.
    CHEMICAL SCIENCE, 2017, 8 (04) : 3270 - 3275
  • [27] CO2 capture by adsorption with nitrogen enriched carbons
    Plaza, M. G.
    Pevida, C.
    Arenillas, A.
    Rubiera, F.
    Pis, J. J.
    FUEL, 2007, 86 (14) : 2204 - 2212
  • [28] Highly efficient colorimetric CO2 sensors for monitoring CO2 leakage from carbon capture and storage sites
    Ko, Kwanyoung
    Lee, Ji-yeon
    Chung, Haegeun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 729
  • [29] Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature
    Han, Kun Kun
    Zhou, Yu
    Chun, Yuan
    Zhu, Jian Hua
    JOURNAL OF HAZARDOUS MATERIALS, 2012, 203 : 341 - 347
  • [30] Loading CuO on the surface of MgO with low-coordination basic O2- sites for effective enhanced CO2 capture and photothermal synergistic catalytic reduction of CO2 to ethanol
    Ting Li
    Hongxia Guo
    Xiao Wang
    Huan Wang
    Li Liu
    Wenquan Cui
    Xiaoran Sun
    Yinghua Liang
    ChineseJournalofChemicalEngineering, 2023, 61 (09) : 58 - 67