Magneto-electric coupling beyond van der Waals interaction in two-dimensional multiferroic heterostructures

被引:3
|
作者
Jin, Chao [1 ]
Liu, Chang [1 ]
Ren, Fengzhu [1 ]
Wang, Bing [1 ]
Jia, Minglei [1 ]
Gu, Qinfen [2 ]
机构
[1] Henan Univ, Joint Ctr Theoret Phys JCTP, Sch Phys & Elect, Inst Computat Mat Sci,Int Joint Res Lab New Energy, Kaifeng 475004, Peoples R China
[2] ANSTO, Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; FERROELECTRIC POLARIZATION; MAGNETISM; FERROMAGNETISM; PREDICTION; MONOLAYERS; ANISOTROPY; METALS; GROWTH; GAS;
D O I
10.1063/5.0180680
中图分类号
O59 [应用物理学];
学科分类号
摘要
Exploring two-dimensional (2D) multiferroic systems with strong magneto-electric coupling properties holds significant application value in nanoscale spintronics devices. However, due to the weak interlayer van der Waals interactions, strong magneto-electric coupling in 2D heterostructures is relatively rare. By using first-principles simulations, we demonstrate that in the NiPS3/Sc2CO2 heterostructure, the ferroelectric polarization switching of the Sc2CO2 layer induces a transition in the magnetic ground state of the NiPS3 layer from the ferromagnetic state to antiferromagnetic ordering, accompanied by a transformation from a semiconductor to a half-metallic state. This magnetic phase transition is caused by a novel magneto-electric coupling mechanism: the polarization switching changes the band alignment between the two materials and then induces a significant interlayer charge transfer, leading to the emergence of Stoner itinerant ferromagnetism. In addition, the polarization switching can also change the magnetic anisotropy from an easy magnetization plane to an easy magnetization axis. These results not only offer a promising multiferroic heterostructure for nonvolatile memory devices and magnetic sensors but also provide a feasible approach for designing multiferroic system with strong magneto-electric coupling.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Van der Waals integration before and beyond two-dimensional materials
    Yuan Liu
    Yu Huang
    Xiangfeng Duan
    Nature, 2019, 567 : 323 - 333
  • [22] Ferroelectric control of magnetic skyrmions in two-dimensional van der Waals heterostructures
    Huang, Kai
    Shao, Ding-Fu
    Tsymbal, Evgeny Y.
    arXiv, 2022,
  • [23] Electronic properties of two-dimensional van der Waals GaS/GaSe heterostructures
    Wei, Wei
    Dai, Ying
    Niu, Chengwang
    Li, Xiao
    Ma, Yandong
    Huang, Baibiao
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (43) : 11548 - 11554
  • [24] Two-Dimensional Hybrid Perovskite-Based van der Waals Heterostructures
    Wang, Haizhen
    Ma, Jiaqi
    Li, Dehui
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (34): : 8178 - 8187
  • [25] Emergent Phenomena in Magnetic Two-Dimensional Materials and van der Waals Heterostructures
    Li, Yang
    Yang, Baishun
    Xu, Shengnan
    Huang, Bing
    Duan, Wenhui
    ACS Applied Electronic Materials, 2022, 4 (07) : 3278 - 3302
  • [26] Emergent Phenomena in Magnetic Two-Dimensional Materials and van der Waals Heterostructures
    Li, Yang
    Yang, Baishun
    Xu, Shengnan
    Huang, Bing
    Duan, Wenhui
    ACS APPLIED ELECTRONIC MATERIALS, 2022, : 3278 - 3302
  • [27] Direct formation of interlayer exciton in two-dimensional van der Waals heterostructures
    Niu, Xianghong
    Xiao, Shanshan
    Sun, Dazhong
    Shi, Anqi
    Zhou, Zhaobo
    Chen, Wei
    Li, Xing'ao
    Wang, Jinlan
    MATERIALS HORIZONS, 2021, 8 (08) : 2208 - +
  • [28] Ferroelectric Control of Magnetic Skyrmions in Two-Dimensional van der Waals Heterostructures
    Huang, Kai
    Shao, Ding-Fu
    Tsymbal, Evgeny Y.
    NANO LETTERS, 2022, 22 (08) : 3349 - 3355
  • [29] Interedge van der Waals interaction between two-dimensional materials
    Kou, Zepu
    Chen, Fangyuan
    Jiang, Zonghuiyi
    Guo, Wanlin
    Liu, Xiaofei
    PHYSICAL REVIEW B, 2023, 108 (11)
  • [30] Two-dimensional van der Waals materials
    Ajayan, Pulickel
    Kim, Philip
    Banerjee, Kaustav
    PHYSICS TODAY, 2016, 69 (09) : 39 - 44